克尔度规
克尔度规的数学表示
若以波以耳-林德奎斯特坐标写出克尔真空解,则为:
其中
M 为旋转物体质量;
a 为自转参数(spin parameter)或称特定角动量(specific angular momentum),描述此物体的旋转,与角动量 J 有关,关系式为 a = J / M ;
所有的物理量采用几何单位: c = G =1。
当自转参数 a 值为零,则表示物体无旋转,克尔度规退化成史瓦西度规。 a = M 的例子对应到最大旋转程度的质量物体。
注意到:
一般而言,波以耳-林德奎斯特径向坐标 r 并无简单而直接、如同径向坐标般的诠释。
“最大”旋转程度指的是一黑洞可以存在的最大 a 值,而非旋转质量物体可以具有的最大 a 值。
参看
史瓦西度规(Schwarzschild metric)
克尔-纽曼度规(Kerr-Newman metric)
雷斯勒-诺德斯特洛姆度规(Reissner-Nordström metric)
参考文献
延伸阅读
Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius & Herlt, Eduard. Exact Solutions of Einstein"s Field Equations. Cambridge: Cambridge University Press. 2003. ISBN 978-0-521-46136-8.
O"Neill, Barrett. The Geometry of Kerr Black Holes. Wellesley, MA: A. K. Peters. 1995. ISBN 978-1-56881-019-5.
D"Inverno, Ray. Introducing Einstein"s Relativity. Oxford: Clarendon Press. 1992. ISBN 978-0-19-859686-8. See chapter 19 for a readable introduction at the advanced undergraduate level.
Chandrasekhar, S. The Mathematical Theory of Black Holes. Oxford: Clarendon Press. 1992. ISBN 978-0-19-850370-5. See chapters 6--10 for a very thorough study at the advanced graduate level.
Griffiths, J. B. Colliding Plane Waves in General Relativity. Oxford: Oxford University Press. 1991. ISBN 978-0-19-853209-5. See chapter 13 for the Chandrasekhar/Ferrari CPW model.
Adler, Ronald; Bazin, Maurice & Schiffer, Menahem. Introduction to General Relativity Second Edition. New York: McGraw-Hill. 1975. ISBN 978-0-07-000423-8. 引文格式1维护:冗余文本 (link) See chapter 7 .
Perez, Alejandro; and Moreschi, Osvaldo M.. Characterizing exact solutions from asymptotic physical concepts. arXiv:Dec 2000 gr-qc/001210027 Dec 2000 . 2000. Characterization of three standard families of vacuum solutions as noted above.
Sotiriou, Thomas P.; and Apostolatos, Theocharis A. Corrections and Comments on the Multipole Moments of Axisymmetric Electrovacuum Spacetimes. Class. Quant. Grav. 2004, 21 : 5727–5733. arXiv eprintGives the relativistic multipole moments for the Ernst vacuums (plus the electrogmagnetic and gravitational relativistic multipole moments for the charged generalization).
Penrose R. ed C. de Witt and J. Wheeler, 编. Battelle Rencontres. W. A. Benjamin, New York. 1968: 222.
"The Classical Theory of Fields", L.D. Landau, E.M. Lifshitz, Fourth revised English edition, Elsevier, Amsterdam ... London, New York ... Tokyo, 1975 (based on B. Carter, 1968).
B. Carter, Phys. Rev. Lett. 26 , 331, 1971
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值