族谱网 头条 人物百科

听觉

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:531
转发:0
评论:0
听觉系统的结构听觉系统由听觉器官各级听觉中枢及其连接网络组成。听觉器官通称为耳,其结构中有特殊分化的细胞,能感受声波的机械振动并把声能转换为神经冲动,叫做声感受器。高等动物的耳可分为外耳、中耳和内耳。外耳包括耳廓和外耳道,主要起集声作用;有些动物的耳廓能自由转动,便于“捕捉”声音。中耳包括鼓膜、听骨链、鼓室、中耳肌、咽鼓管等结构,主要起传声作用。鼓膜是封闭外耳道内端的一层薄膜结构。声波从外耳道进入,作用于鼓膜,后者随之产生相应的振动。哺乳动物的听骨链是由3块小骨(锤骨、砧骨、镫骨)组成的杠杆系统,一端为锤骨柄,附着于鼓膜内面,另一端为镫骨底板,封盖在内耳的卵圆窗膜上,鼓膜的振动通过这一杠杆系统可以有效地传至内耳,鼓膜内为鼓室,听骨链及中耳肌都在其中。中耳肌又名耳内肌,有两块:鼓膜张肌的收缩通过牵拉锤骨而使鼓膜紧张,镫骨肌的收缩使镫骨固定,其作用都是限制声音向内耳的传导。咽鼓管(耳咽管)由鼓...

听觉系统的结构

听觉系统由听觉器官各级听觉中枢及其连接网络组成。听觉器官通称为耳,其结构中有特殊分化的细胞,能感受声波的机械振动并把声能转换为神经冲动,叫做声感受器。高等动物的耳可分为外耳、中耳和内耳。外耳包括耳廓和外耳道,主要起集声作用;有些动物的耳廓能自由转动,便于“捕捉”声音。

中耳包括鼓膜、听骨链、鼓室、中耳肌、咽鼓管等结构,主要起传声作用。鼓膜是封闭外耳道内端的一层薄膜结构。声波从外耳道进入,作用于鼓膜,后者随之产生相应的振动。哺乳动物的听骨链是由3块小骨(锤骨、砧骨、镫骨)组成的杠杆系统,一端为锤骨柄,附着于鼓膜内面,另一端为镫骨底板,封盖在内耳的卵圆窗膜上,鼓膜的振动通过这一杠杆系统可以有效地传至内耳,鼓膜内为鼓室,听骨链及中耳肌都在其中。中耳肌又名耳内肌,有两块:鼓膜张肌的收缩通过牵拉锤骨而使鼓膜紧张,镫骨肌的收缩使镫骨固定,其作用都是限制声音向内耳的传导。咽鼓管(耳咽管)由鼓室通至咽部,平时关闭,吞咽和某些口部动作时开放,可使鼓室内的空气压力经常与大气压力保持平衡。

内耳的一部分,司平衡,称前庭器官,另一部分能感受声音刺激叫耳蜗,是骨质外壳包着的管状结构,卷曲数圈(人类为两圈半)呈蜗牛状,故名。这一管状结构靠近镫骨底板的一端较粗,叫基部,另一端较细,叫蜗顶。耳蜗骨壳内有膜性结构分隔的3条平行管道,从基部伸到蜗顶,分别叫做前庭阶、鼓阶和蜗管(或中阶)。前庭阶和鼓阶在基部各有一窗,分别叫做卵圆窗(前庭窗)和圆窗,两窗都有膜。圆窗外为鼓室,卵圆窗则为镫骨底板所封盖。前庭阶和鼓阶在蜗顶处(蜗孔)通连,此两阶内充满淋巴液,叫外淋巴。蜗管夹在前庭阶与鼓阶之间,亦充满淋巴液,叫内淋巴。分隔蜗管与鼓阶的膜状结构叫基底膜。由感受细胞(声感受器),神经末梢及其他结构组成的声音感受装置就排列在基底膜上,叫螺旋器或柯蒂氏器。若把卷曲的耳蜗拉直,从其横切面看,基底膜、螺旋器以及相邻结构。声音感受细胞是排列整齐的3行外毛细胞和1行内毛细胞,由支持细胞支撑,安置在基底膜上。毛细胞上端有许多很细的纤毛,其毛梢与螺旋器上方的盖膜相连。支配毛细胞的神经由位于耳蜗纵轴(蜗轴)处的螺旋神经节发出。螺旋神经节的神经细胞的另一轴索构成听神经,沿蜗轴走出,穿过颅骨入脑干。

听觉各级中枢间的传导通路颇为复杂。哺乳动物的第1级听中枢是延髓的耳蜗核,它接受同侧的听神经纤维。从耳蜗核发出的神经纤维大部分交叉到对侧,小部分在同侧,在上橄榄核改换神经元或直接上行,组成外侧丘系,到达中脑四叠体的下丘,从下丘发出的上行纤维及小部分直接从上橄榄核来的纤维终止在丘脑的内侧膝状体。内侧膝状体发出的纤维束上行散开成放射状,叫听放线,终止于大脑听皮层,是听觉最高级的中枢。

耳的声学特性

作为一个声音检测装置,耳的声学特性甚为复杂,几个较为重要的方面如下:

耳的声阻抗

声音在介质中传播时遇到的阻力叫声阻抗。介质为空气时阻抗小,为固体或液体时阻抗大。耳的声阻抗主要指在声传导时中耳结构所具有的总阻抗,它对听觉器官的灵敏度、频响特性等有决定性的影响。中耳结构任何部分的病变一方面影响听觉功能,另一方面会使耳的声阻抗呈特征性的变化。近年新发展的一种以声阻抗的变化为指标,客观地检查人听觉功能的方法叫做阻抗测听术。

中耳的传声途径

陆生动物鼓膜接受的是气播声,内耳感受细胞接受的是液播声,由于声波在空气介质与淋巴液介质传播时阻抗的不匹配,从空气至淋巴液的直接过渡将使声能大量损失,传播效率约只千分之一,正常耳的传声途径是声波作用于鼓膜,经听骨链传导至内耳,叫气传导。鼓膜的有效面积比卵圆窗膜的约大20倍;听骨链的杠杆结构使鼓膜端振幅大、力量小的振动,变成镫骨底板端振幅小、力量大的振动,有如一个变压器,起到阻抗匹配的作用,从而保证了有较高的传声效率。

声波也可以通过头骨的振动直接传至内耳,叫骨传导,这一传声途径效率很低,对正常耳的听觉作用不大,但在中耳有严重疾患时,听觉便主要靠它。

声波在耳蜗中的传播

镫骨底板和卵圆窗膜的振动推动前庭阶内的淋巴液,声波便开始以液体介质周期性压力变化的方式移动,其前进方向一是从卵圆窗开始,沿前庭阶推向蜗庭,过蜗孔后再沿鼓阶推向圆窗。另一前进方向是前庭阶淋巴液压力的变化横向通过蜗管壁传至鼓阶。由于淋巴液不可压缩,圆窗膜在这里便起重要的缓冲作用:卵圆窗膜向内推时它向外鼓出,卵圆窗膜向外拉时它向内收。由于声波的传播需要时间,在每一瞬间前庭阶和鼓阶各段的压力便各不相同,蜗管夹在二阶之间,二阶内的瞬态压力差便使蜗管的基底膜在不同段内随时间而上下波动。因为压力从前庭阶经蜗管壁横向地传至鼓阶这一途径较短,在声波引起基底膜振动的过程中,它起较重要的作用。基底膜的波动也从耳蜗基部开始,依次向蜗顶移动,叫做行波。

耳的频率响应

耳感受声音的灵敏度与频率的关系。外耳道的共振特性、中耳声阻抗的频率特性、耳蜗内行波的机械特性、螺旋器结构的滤波特性及感受细胞的生理特性,共同决定了耳对不同频率的声音感受的灵敏度是不一样的。各种动物都有其听觉较灵敏的频率范围,人类大致是1000~8000赫,在这一范围以外灵敏度依次递减。

听觉机制

包括:机械→电→化学→神经冲动→中枢信息处理等一串过程。在蜗管的内淋巴液中若以鼓阶的外淋巴中的电位为零通常有+80毫伏的正电位,螺旋器毛细胞内的电位则约为-60毫伏,电流不断从蜗管通过盖膜、毛细胞的纤毛、细胞膜及周围组织流入毛细胞内,形成回路。当声音引起基底膜运动时,螺旋器也随之作相应的运动。由于运动的方向、惯性等因素的作用,毛细膜与盖膜之间产生一种展力使纤毛弯曲,改变了回路中的电阻,从而调制了通过的电流,使听神经末梢和毛细胞间形成的突触周围也有相应的电位变化,导致化学递质的释放,后者使神经末梢兴奋,发出神经冲动。接受各种不同特性的声音后发放出的神经冲动在时间(不同的节律)和空间(不同的神经纤维)上各有不同的构型,它们携带有关声音的信息,依次传至各级听觉中枢,经过处理分析,最后便产生反映声音各种复杂特性的听觉。有关信息在听觉中枢的处理过程还不完全清楚。

听觉学说

对声音的频率如何在耳蜗进行分析曾提出过多种假设,但基本上可概括为两种观点:①不同频率的声音兴奋基底膜不同部位的感受细胞,兴奋部位是频率分析的依据,有关频率的信息以冲动发放的空间构型来传送;②不同频率的声音使听神经兴奋后发出不同频率的冲动,冲动频率是声音频率分析的依据,有关信息以冲动发放的时间构型来传送。前一观点叫做部位机制,后一观点叫做时间机制,两观点不是互相排斥,而是互相补充的。各种学说的一个共同缺点是只着眼于耳蜗,而频率精确分析的机制是不能脱离中枢,单在耳蜗水平上寻找的。

行波学说

声音引起基底膜的波动是一种行波,从耳蜗基部开始逐步向蜗顶移动,在移动过程中行波的振幅是变化的,振幅最大点的位置及行波移动的距离都随声音的频率而变,振幅最大点在高频刺激时靠近耳蜗基部,频率逐渐降低时它逐渐向蜗顶移动,行波振幅最大处基底膜受刺激最强,其位置与频率的关系是耳蜗频率分析的基础。行波理论正确描述了500Hz以上的声音引起的基底膜活动,但难以解释500Hz以下的声音对基底膜的影响。

频率学说

听神经不同的纤维受刺激后发出的神经冲动可以在时间上错开,分别与声波不同的周期同步,每一声波周期因而都可以有一定数量的纤维同步发放,叫做排放。总体上排放的频率便与声音频率一致,形成听觉频率分析的依据。在听神经纤维上记录神经冲动的实验表明,神经冲动不一定是每一声波周期都发放一次,高频时一般要隔若干周期才发放一次,但发放的时间总是和声波周期的相位保持良好的同步关系(锁相关系),说明冲动排放的组成是具备必要条件的。但频率理论难以解释人而对声音频率的分析。因为基底膜无法做每秒1000次以上的快速运动。这是和人耳能够接受超过1000Hz以上的声音不符合的。

共鸣学说

赫尔姆霍兹认为基底膜的横纤维能够对不同频率的声音产生共鸣。高频声音诱发短纤维共鸣,低频诱发长纤维共鸣。由于强调了基底膜的震动部位对产生音调听觉的作用,因为也叫位置理论。

神经齐射学说

当声音频率低于400Hz时,听神经个别纤维的发放频率是和声音频率对应的。声音频率提高时,个别纤维利用联合齐射反应频率较高的声音。韦弗尔指出,用神经齐射理论可以对5000Hz以下的声音进行频率分析。声音频率超过5000Hz,位置理论是对频率进行编码的唯一基础。

声音的强度分析

感受细胞和神经单元的兴奋阈值有高有低,刺激强时被兴奋的感受细胞和神经单元便多,每一神经单元兴奋后发放神经冲动的数目也多。对于听觉,被兴奋单元的阈值是高还是低,兴奋单元数目的多少,以及神经冲动数目的多少,这都可以是声音强度分析的依据。按照排放学说,兴奋单元数目及发放冲动数目的增加,仅使组成每一排放的发放纤维数目增加,而并不增加排放的数目,因此与频率分析不矛盾。

声源定位

有赖于双耳听觉。由于从声源到两耳的距离不同及声音传播途中障碍物的不同,从某一方位发出的声音到达两耳时便有时间(或相位)差和强度差,其大小与声源的方位有关。在同一瞬间双耳接受到声音的时间差是低频声定位的主要依据,强度差是高频声定位的主要依据,耳廓的聚声作用对高频声定位也有一定的帮助。

听觉的基本特性

听觉系统的基本功能是感受声音和辨别声音。感受声音的能力叫做听力,通常以听阈的高低表示,听阈低表示听觉灵敏或听力好,辨别声音的能力可用各种辨别阈表示。

听阈

足以引起听觉神经冲动的最小声音强度,通常用分贝数表示。人的听阈可用主观感觉作测定指标,动物的听阈则需用条件反射、行为观察或电生理方法测定。正常耳听阈的高低因频率而异,不同的动物种类也不相同,各种哺乳类动物听觉灵敏的频率范围虽不相同,但它们的最佳听阈颇为接近,阈值声压大致在0.00002帕(斯卡),这样的声压使鼓膜振动时位移的幅度约为0.1纳米。这是很高的灵敏度,但若再提高就不见有生物如此了,因为可能因要经常不断地听到空气分子布朗运动的声音而日夜不得安宁。各种动物的最佳听阈见表。

分贝(dB)

由于听觉系统能感受声音的强度变化范围极大,从听阈的强度到最大可耐受的强度以能量计算可相差1万亿倍,而且人对声音强弱的感觉也不与声压成正比而是与其对数值成正比。为了表示的方便,声学中使用一个称为声压级(SPL)的量L p ,它是某声压值p与基准声压p 0 之比的常用对数乘以20:L p =20lg。声压级的单位为分贝,记作d B 。当要表示的声压与基准声压相同时,分贝数为0(即0分贝)。一般以0.0002达因/厘米 (即0.0002微巴或2×10 帕)为基准声压。声压级(SPL)不因频率而变。0分贝声压级大致接近人和动物对最敏感的频率的听阈。以正常平均听阈为0分贝的表示系统称为听力级(HL),它的绝对声压值是随频率而变的。

听频范围

在强度足够大时(以不引起听觉以外的其他感觉为限)可听到的频率范围在人类约20~20000赫,因此,习惯上把这一范围叫做声频,20000赫以上的频率叫超声,20赫以下叫次声。动物的听频范围较难准确测定,总的说来种类间差别很大。

听阈曲线

听阈强度与频率的关系曲线能较全面地反映听觉系统对声音的感受能力,因此,在听觉研究和耳科临床工作中都是重要的测试指标。其中强度较低的一段相当于听觉较敏感范围;当强度以听力级表示时,又称听力曲线或听力图。

频率辨别

辨别声音频率的高低;听觉系统最基本的功能之一。频率的高低反映在人类的主观感觉上为音调的高低,所以频率辨别在又称音调辨别。

音调(频率)辨别阈

能辨别的最小频率差,与频率之间有一定的函数关系。正常人的音调辨别阈在1000赫以下时为1~2赫,在1000赫以上时约为频率的0.1~0.2%。根据有限的资料,用条件反射方法测得的猫和粟鼠的频率辨别阈约为人的6~8倍。猕猴的则与人的相近。

强度辨别

辨别声音强度的大小,在人类主观感觉上的反映为响度的大小。

响度辨别阈

能辨别的最小强度差。当声音为中等强度时,正常人的响度辨别阈约为5~10%,或近似地相当于0.5~1分贝。在因耳蜗病变或损伤导致的耳聋患者,患耳的响度辨别阈常比正常耳的小,其辨别能力反较精确。这种患耳听阈升高很多,但较强声音引起的响度感觉并不低,叫做复响现象。

音色

反映声音频谱特性的主观感觉的统称。人可辨别的声音种类几乎是无数的,它们各有独特的音色,但较难具体地描述,更不易准确定量。音色的辨别以频率辨别和强度辨别为基础,但复杂得多。在音乐中音色主要与乐音的谐波成分有关。

回声定位

有些动物具有回声定位功能,它们发出特定的声波并接受周围物体反射回来的回声,根据回声的特点判断物体的位置、形态、动态、性质等。蝙蝠和海豚是有名的回声定位能力好的动物,此外,还有少数哺乳动物和鸟有这种功能。在飞行时蝙蝠喉头发声器官间断地发出频率较高(2万赫以上)的脉冲声作为探测信号,其中含有不调频成分和调频两种成分。蝙蝠的听觉系统能根据探测信号与回声信号两者的时间差、强度差、频率差(多普勒效应)等,分别判断目标物体的距离、大小、移动速度和方向等特点,分辨率可达相当精确的水平。每一蝙蝠发出的探测声各有特点,这样可避免与其他蝙蝠发出的探测声相混,蝙蝠大脑皮层听区的面积相对地较大,皮层细胞有精细的分工排列,分别对不同数量的时间差、强度差、频率差、调频特性、回声的组成成分有其特异的敏感性(见生物声学)。

延伸阅读

Enrique A. Lopez-Poveda, Alan R. Palmer & Ray Meddis(Eds.,2010). The Neurophysiological Bases of Auditory Perception (pp. 99–110). New York: Springer. ISBN 978-1-4419-5685-9

外部链接


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 听觉生理
耳朵的解剖构造耳朵由外而内依序为耳廓、外耳道、耳膜、中耳、卵圆窗及圆窗、内耳耳廓(auricle):每个人有两个耳廓,左右各一。含高弹性软骨,呈凹凸不匀之椭圆型。外耳道(externalauditorycanal):又称为外听道,长约2.5~3.5mm,呈S型单侧封闭管,由开端起至1/3为软骨组成,后2/3为骨质部。以耳膜(亦称鼓膜tympanicmembrane)与中耳相隔。中耳(middleear):其中构造有内耳(internalear):中枢听觉系统的解剖结构中枢听觉系统是指听觉通路位于中枢神经系统中的部分,由低到高主要由以下解剖结构构成:耳蜗核(Cochlearnucleus),位于延髓,包括腹侧耳蜗核(Dorsalcochlearnucleus)和背侧耳蜗核(Ventralcochlearnucleus)。斜方体(Trapezoidbody)。上橄榄核(Superioroliv...
· 听觉障碍
定义动物的听觉灵敏度可以以其可以听到的最小强度声音来定义,也就是听阙。人和一些动物的听阙可以用听力图(英语:audiogram)来表示。在量测时会用听力计〈audiometer〉产生不同频率的声音,量测声音在各频率下可以使受测者有反应的最小强度。听力图也可用电生理测试(electro-physiological)的方式进行,受测者不需针对声音进行反应。动物的听阙会随着频率不同而不同,若不同频率、相同强度的声音同时产生,有些频率的声音会相当大声,而有些频率的声音却会小到几乎听不见。一般而言,若提高声音的振幅,声音会比较容易被听到,若动物使用声音互相沟通,沟通所用声音的频率往往也是听觉灵敏度最好的频率。不同频率下的听觉灵敏度会受听觉系统的各部分所影响,从外耳的生理特性到传导讯号到大脑听觉区的神经。听力正常听力受损人类的听觉障碍主要是指人对于日常说话的频率有较低的灵敏度。1997年,世界卫生组织...
· 听觉游戏
听觉游戏的历史在有Windows这类图形操作系统以前,大多数家用电脑使用DOS或其它基于文字的操作系统。基于文字就意味着无论用户是否有视力障碍,都不会影响他们使用的易用性。这也意味着,文字冒险游戏对于两种类型的用户的易用性是相同的。不管怎样,电脑功能越强,结果是出现视觉效果更丰富的游戏。这导致了在给有正常视力人士和给失明人士的电子游戏间产生了巨大的代沟,而且代沟还在不断的拉远。当有视力的玩家在神秘岛和最终幻想的3D游戏世界中冒险时,失明玩家不得不玩21点、海战等更平常的游戏。但是当电子游戏产业开始繁荣时,一些业余游戏设计师开始为电子游戏中加入声响以方便失明人士。不久他们开始开发自己的游戏,不完全是基于存在的游戏概念,而是基于声音的可能性。当前的市场状况大多数听觉游戏被几家小公司(由只有1至4人组成的小组构成)开发。主要听众仍然是有视力障碍的用户。但随着商业利益的稳定增长。在1999年,一家...
· 法国动物学家认为动物靠听觉躲过海啸灾难
法国动物学家认为,有很多动物躲过了2004年12月26日席卷印度洋沿岸的海啸,这主要归功于它们远比人类发达的听觉。在历史上记载的海啸、地震和火山爆发等事件中也有这种情况。在灾难来临之前,鸟飞走,狗狂吠,兽群逃往安全的地方。专家认为,动物死里逃生不大可能是由于所谓的第六感,而是因为它们的听觉或某种感官更灵敏。在法国国家科学研究中心(CNRS)研究动物行为的埃尔夫·弗里茨说:“在与震动、地震和声波有关的任何事情上,动物都拥有人类所没有的感知能力。”他说:“大象能够听到次声。它们在几十公里以外的遥远地方就能听到这种声音。”次声即低频音波,频率通常在20赫兹以下,超出人类的听觉极限。弗里茨提出两种理论,对大象如何提前预知波浪逼近作出了可能的解释:它们也许感知到巨浪前进时产生的振动“信号”或者空气传播的噪音,而人类却无法感知。弗里茨认为,大象并不是唯一能通过振动发现危险的动物。兔子和其他四足动物能通...
· 清谈衰落改变晋宋诗风诗歌阅读方式从听觉转向视觉
晋宋之际是一个政治大变革的时期,即门阀政治向皇权政治的回归。门阀政治的衰落,使士族名教自然合一的人格模式失去了现实基础而走向分化,由此造成了士族内部清浊分流,使门阀士族之间的隔阂十分严重,一改两晋风气而严于交纳,清谈言咏迅速走向衰落,对东晋后期以来的文学产生了深刻影响。清谈言咏衰落改变诗歌阅读方式东晋清谈的兴盛与士族之间交际的盛行密切相关。东晋前中期门阀士族之间,在自然名教合一的人格及风流雅尚上多彼此推崇,清赋晌士族间重要的交际方式。东晋后期,士族内部开始分化,交际之风逐渐衰落,如《宋书·王球传》:“球公子简贵,素不交游,筵席虚静,门无异客。”《郑鲜之传》:“鲜之下帷读书,绝交游之务。”士林分化、交际之风的衰落,使玄学清谈也走向衰落,如王微《报何偃书》云:“自怪鄙野,不参风流。”“风流”指的就是玄学清谈,王、谢是东晋“风流”的代表,王微“不参风流”说明玄风的衰落是很明显的。清谈言咏的衰落,...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信