族谱网 头条 人物百科

量子点

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:676
转发:0
评论:0
描述QuantumDotswithemissionmaximaina10-nmsteparebeingproducedinakgscaleatPlasmaChemGmbH小的量子点,例如胶体半导体纳米晶,可以小到只有2到10个纳米,这相当于10到50个原子的直径的尺寸,在一个量子点体积中可以包含100到100,000个这样的原子。自组装量子点的典型尺寸在10到50纳米之间。通过光刻成型的门电极或者刻蚀半导体异质结中的二维电子气形成的量子点横向尺寸可以超过100纳米。将10纳米尺寸的三百万个量子点首尾相接排列起来可以达到人类拇指的宽度。制造量子点的制造方法可以大致分为三类:化学溶液生长法,外延生长法,电场约束法。这三类制造方法也分别对应了三种不同种类的量子点。化学溶液生长法1981年,瑞士物理学家在水溶液中合成出了硫化镉胶体。1983年,贝尔实验室科学家Brus证明了改变硫化镉胶体的大小,其...

描述

量子点

  Quantum Dots with emission maxima in a 10-nm step are being produced in a kg scale at PlasmaChem GmbH

小的量子点,例如胶体半导体纳米晶,可以小到只有2到10个纳米,这相当于10到50个原子的直径的尺寸,在一个量子点体积中可以包含100到100,000个这样的原子。自组装量子点的典型尺寸在10到50纳米之间。通过光刻成型的门电极或者刻蚀半导体异质结中的二维电子气形成的量子点横向尺寸可以超过100纳米。将10纳米尺寸的三百万个量子点首尾相接排列起来可以达到人类拇指的宽度。

制造

量子点的制造方法可以大致分为三类:化学溶液生长法,外延生长法,电场约束法。这三类制造方法也分别对应了三种不同种类的量子点。

化学溶液生长法

1981年,瑞士物理学家在水溶液中合成出了硫化镉胶体。 1983年,贝尔实验室科学家Brus证明了改变硫化镉胶体的大小,其激子能量也随之变化。于是,他将这种这种胶体与量子点的概念联系起来,首次提出胶状量子点(colloidal quantum dot)。 1993年,麻省理工学院Bawendi教授领导的科研小组第一次在有机溶液中合成出了大小均一的量子点。 他们将三种氧族元素(硫、硒、碲)溶解在三正辛基氧膦中,而后在200到300摄氏度的有机溶液中与二甲基镉反应,生成相应的量子点材料(硫化镉,硒化镉,碲化镉)。之后人们在此种方法的基础上发明出了许多合成胶状量子点的方法。目前大部分半导体材料都可以用化学溶液生长的方法合成出相应的量子点。

胶状量子点具有制作成本低,产率大,发光效率高(尤其是在可见光和紫外光波段)等优点。但缺点是电导率极低。由于在生产过程中在量子点表面产生有机配体,抵消量子点之间的范德瓦耳斯吸引力,以维持其在溶液中的稳定性。但这层有机配体极大的阻碍了电荷在量子点之间的传输。这点大大降低了奈米微晶在太阳电池和其它的元件上的应用。科学家们曾尝试用各种方法提高电荷在这种材料中的传导率。有代表性的是2003年芝加哥大学的Guyot-Sionnest教授用较短链的氨基物取代原有的长链的有机配体,将量子点间距缩小,并用电化学的方法将电子大量注入量子点内,将电导率提高到了0.01S/cm。

2009年,芝加哥大学的Dmitri Talapin教授开发出一种新的方法,用无机物取代了之前附着在量子点表面的有机配体,能让个别奈米微晶以强连结的方式相互结合成阵列,克服了前述的问题。Talapin表示,他们的方法提供一个材料设计的多功能的平台,将会对电子元件、光伏元件和热电(thermoelectrics)元件的制作带来冲击。另外,此方法提高全溶液(all-solution)元件制作的可能性,让此材料在连续式滚筒(roll-to-roll)制程的应用上增添不少吸引力,例如薄膜太阳能电池的制作。研究人员使用一种名为复合金属硫化物(metal chalcogenide complex)的材料,来将胶体状的奈米晶体相互黏合。其配位基较先前使用的有机配位基更为稳定、坚固,而且不会改变奈米晶体的化学性质,还可让奈米晶体间的电荷转移更有效率。Talapin等人确实观察到系统中的导电率相比于以往方法得到的提高了一千倍。目前,该团队正在研究如何在实际应用上使用奈米晶体的连接技术,并且调查除了金属硫化物材料外,是否还有其它合适的材料。芝加哥大学已授权Evident Technologies公司在热电应用上采用此技术。

胶体量子点的另一个热点领域是磁性研究。直到目前,半导体只能在相当低温下呈现磁性,原因是磁化半导体奈米微粒需要靠激子(exciton)之间的磁性交互作用,但此作用的强度在30 K附近就不足以对抗热效应。

最近,华盛顿大学的Daniel Gamelin等人制造出掺杂的奈米微晶,它们的量子局限效应(quantum confinement effect)使激子具有很大的磁性交互作用,且生命周期可长达100 ns,比先前的记录200皮秒(picosecond, ps)高出很多。研究人员利用光将激子注入胶状奈米微晶中,产生相当强的光诱发磁化(light-induced magnetization)现象。

华大团队成功的关键在于以磁性锰离子取代镉化硒(CdSe)半导体奈米微晶中的部分镉离子。这些悬浮在胶状溶液中的微晶大小不到10 nm,照光时内部产生的强大磁场可将锰离子的自旋完全排正。Gamelin表示,排正的过程非常快,此效应在低温时非常强,且可维持到室温。这要归功于第一次在研究中被观察到的高温磁激子(excitonic magnetic polaron, EMP)。Gamelin解释,由于掺质-载子间的交互作用够强,EMP稳定性因而增强超过100倍,所以才能在300 K下观察到磁化效应。

美国科学家开发出一种新型的电子胶(electronic glue),能将个别的奈米晶体(nanocrystals)连接在一起。这种电子胶还能用来制作大面积的电子元件和光伏(photovoltaics)元件。

利用旋转或浸泡涂布(dip coating)和印刷等溶液类制程来制作大面积太阳电池,例如便宜的屋顶太阳能面板,是高成本效益的方法。不过这些技术必须让半导体溶解,以方便做为墨水(ink)使用。半导体奈米微晶是微小的半导体块状物,是制作此类墨水的理想材料。

此外,胶状半导体量子点与软式微影术(soft lithography)及印刷术(in-jet printing)等常见的制程相容。Gamelin认为胶体可望成为奈米科技在各种元件应用上的新工具箱。

外延生长法

外延生长法是指在一种衬底材料上长出新的结晶,如果结晶足够小,就会形成量子点。根据生长机理的不同,该方法又可以细分成化学气相沉积法和分子束外延法。

这种方法生长出的量子点长在另一种半导体上,很容易与传统半导体器件结合。另外由于没有有机配体,外延量子点的电荷传输效率比胶体量子点高,并且能级也比胶体量子点更容易调控。同时,也具有表面的缺陷少等优点。然而,由于化学气相沉积和分子束外延都需要高真空或超高真空,因此相比于胶体量子点,外延量子点的成本较高。

电场约束法

电场约束法是指,完全利用调控金属电极的电势使半导体内的能级发生扭曲,形成对载流子的约束。由于量子点所需尺寸在纳米级别,因此金属电极需要用电子束的方法制作。成本最高,产率也最低。但用这种方法制作出的量子点,可以简单通过调控门电压容易控制其能级,载流子的数量和自旋等。由于极高的可控性,这种量子点也最适合于用作量子计算。

大规模生产

应用

量子点LED可以达到接近连续光谱,高演色性的特性;目前人工光源只有高耗能的白炽灯、卤素灯能达到连续光谱的特性,是LED、萤光灯无法取代的重要特性;量子点LED可望满足光线品质及健康较为要求使用者,达到全面淘汰高耗能光源的目标。

量子点显示技术可以达到更好的色彩显示特性。

“量子点屏幕”采用的是麻省理工大学研发的量子点技术,Sony的Triluminos屏幕正是使用了该技术

另见

量子线

量子阱

量子点连接

纳米颗粒

纳米晶体

纳米晶体太阳能电池


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 量子
历史量子物理是研究量子化的物理分支,在1900年根据热辐射理论延伸建立量子理论。由于马克斯·普朗克(M.Planck)试图解决黑体辐射问题,所以他大胆提出量子假设,并得出了普朗克辐射定律,沿用至今。当时德国物理界聚焦于黑体辐射问题的研究。马克斯·普朗克在1900年12月14日的德国物理学学会会议中第一次发表能量量子化数值、Avogadro-Loschmidt数的数值、一个分子摩尔(mole)的数值及基本电荷。其数值比以前的更准确,提出的理论也成功解决了黑体辐射的问题,标志着量子力学的诞生。量子假设的提出有力地冲击了经典物理学,促进物理学进入微观层面,奠基现代物理学。但直到现在,物理学家关于量子力学的一些假设仍然不能被充分地证明,仍有很多需要研究的地方。相关方程黑体辐射量子方程黑体辐射量子方程是量子力学的第一部分。在1900年10月7日面世。当物体被加热,它以电磁波的形式散发红外线辐射。物体...
· 量子引力
背景经典描述下的引力,是由爱因斯坦于1916年建立的广义相对论成功描述的。该理论透过质量对于时空曲率的影响(爱因斯坦方程)而对水星近日点岁差偏移、引力场下光线红移、光线弯折等三种问题提出了完满的解释,并且至今为止在天文学的观测上,实验数据与广义相对论预测值的相符程度远高于其他竞争理论。因此,广义相对论描述经典引力的正确性很少有人怀疑。另一方面,量子力学从狄拉克建立了相对论性量子力学的狄拉克方程开始,扩充成量子场论的各种形式。其中包括了量子电动力学与量子色动力学,成功地解释了四大基本力中的三者--电磁力、原子核的强力与弱力的量子行为,仅剩下引力的量子性尚未能用量子力学来描述。除了未能达成对于引力量子(引力子)的描述之外,两个成功的理论在根本架构上也有冲突之处:量子场论是建构在广义相对论的平坦时空下基本力的粒子场上。如果要透过这种相同模式来对引力场进行量子化,则主要问题是在广义相对论的弯曲时空...
· 量子测量
量子测量的数学形式与经典物理中的测量不同,量子测量不是独立于所观测的物理系统而单独存在的,相反,测量本身即是物理系统的一部分,所作的测量会对系统的状态产生干扰。一般形式:量子公设III量子公设的第三条是对测量下的定义。量子测量可以通过一个测量算符的集合{Mm}{\displaystyle\{M_{m}\}}来表示,它作用在系统的状态空间上。测量算符M{\displaystyleM}的序列号m{\displaystylem}表示测量所得出的不同结果。如果系统在测量前处于状态|ψψ-->⟩⟩-->{\displaystyle|\psi\rangle},那么测量后得到结果m的概率是:测量后系统的状态变为:测量算符必须满足以下的完备性条件:上述完备性条件与下式等价,即完备性条件决定了测量得到各个结果的概率和为1:射影测量射影测量(projectivemeasurement)是一般形式量子测量的一个...
· 量子计算
历史随着计算机科学的发展,史蒂芬·威斯纳(英语:StephenWiesner)在1969年最早提出“基于量子力学的计算设备”。而关于“基于量子力学的信息处理”的最早文章则是由亚历山大·豪勒夫(1973)、帕帕拉维斯基(1975)、罗马·印戈登(1976)和尤里·马尼(1980)年发表。史蒂芬·威斯纳的文章发表于1983年。1980年代一系列的研究使得量子计算机的理论变得丰富起来。1982年,理查德·费曼在一个著名的演讲中提出利用量子体系实现通用计算的想法。紧接着1985年大卫·杜斯提出了量子图灵机模型。人们研究量子计算机最初很重要的一个出发点是探索通用计算机的计算极限。当使用计算机模拟量子现象时,因为庞大的希尔伯特空间而数据量也变得庞大。一个完好的模拟所需的运算时间则变得相当可观,甚至是不切实际的天文数字。理查德·费曼当时就想到如果用量子系统所构成的计算机来模拟量子现象则运算时间可大幅度减...
· 量子信息
基础重大发现1927年,海森堡发现在测量粒子动量和位置的时候会导致h/4π的误差(两者误差相乘)。测量时位置的误差越小,动量的误差就会变得相当大。而h/4π就是这个误差的下限(也就是说两者误差的乘积大于等于h/4π)。这一结论最终被称作不确定性原理。1935年,阿尔伯特·爱因斯坦、鲍里斯·波多尔斯基和纳森·罗森提出了爱因斯坦-波多尔斯基-罗森悖论,客观上揭示了量子纠缠现象。1984年,查理斯·贝内特(CharlesBennett)与吉勒·布拉萨(GillesBrassard)提出一种量子密码分发协议,后被称为BB84协议。1994年,数学家彼得·秀尔发现针对整数分解的秀尔算法(Shor算法)。2001年,IBM使用NMR实做的量子计算机以及7个量子比特展示了秀尔算法的实例,将15分解成3×5。相干特性EPR实验假设一个零自旋中性π介子衰变成一个电子与一个正电子,这两个衰变产物各自朝着相反方...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信