族谱网 头条 人物百科

DNA测序

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:678
转发:0
评论:0
用途历史基本方法Maxam-Gilbert测序法马克萨姆-吉尔伯特测序(英语:Maxam-Gilbertsequencing)是一项由阿伦·马克萨姆(英语:AllanMaxam)与沃尔特·吉尔伯特于1976~1977年间开发的DNA测序方法。此项方法基于:对核碱基特异性地进行局部化学改性,接下来在改性核苷酸毗邻的位点处DNA骨架发生断裂。Sanger测序法Sanger(桑格)双脱氧链终止法是弗雷德里克·桑格(FrederickSanger)于1975年发明的。测序过程需要先做一个聚合酶连锁反应(PCR)。PCR过程中,双脱氧核苷酸可能随机的被加入到正在合成中的DNA片段里。由于双脱氧核糖核苷酸又少了一个氧原子,一旦它被加入到DNA链上,这个DNA链就不能继续增加长度。最终的结果是获得所有可能获得的、不同长度的DNA片段。目前最普遍最先进的方法,是将双脱氧核糖核苷酸进行不同荧光标记。将PCR...

用途

历史

基本方法

Maxam-Gilbert测序法

马克萨姆-吉尔伯特测序(英语:Maxam-Gilbert sequencing)是一项由 阿伦·马克萨姆 ( 英语 : Allan Maxam ) 与沃尔特·吉尔伯特于1976~1977年间开发的DNA测序方法。此项方法基于:对核碱基特异性地进行局部化学改性,接下来在改性核苷酸毗邻的位点处DNA骨架发生断裂 。

Sanger测序法

Sanger(桑格)双脱氧链终止法是弗雷德里克·桑格(Frederick Sanger)于1975年发明的。测序过程需要先做一个聚合酶连锁反应(PCR)。PCR过程中,双脱氧核苷酸可能随机的被加入到正在合成中的DNA片段里。由于双脱氧核糖核苷酸又少了一个氧原子,一旦它被加入到DNA链上,这个DNA链就不能继续增加长度。最终的结果是获得所有可能获得的、不同长度的DNA片段。目前最普遍最先进的方法,是将双脱氧核糖核苷酸进行不同荧光标记。将PCR反应获得的总DNA通过毛细管电泳分离,跑到最末端的DNA就可以在激光的作用下发出荧光。由于ddATP, ddGTP, ddCTP, ddTTP(4种双脱氧核糖核苷酸)荧光标记不同,计算机可以自动根据颜色判断该位置上碱基究竟是A,T,G,C中的哪一个 。

高级方法和de novo测序法

霰弹枪定序法

霰弹枪定序法 ( Shotgun sequencing ,又称 鸟枪法 )是一种广泛使用的为长DNA测序的方法,比传统的定序法快速,但精确度较差。曾经使用于塞雷拉基因组(Celera Genomics)公司所主持的人类基因组计划。

Bridge PCR

新一代测序

随着人们对低成本测序的需求与日俱增,推动了 高通量测序 (或称为 二代测序 、 新一代测序 、 下一代测序 )的发展,这些技术对测序过程多路复用,同时产生上千或上百万条序列 。高通量测序技术的目的是降低DNA测序的成本,这个成本比同样可实现测序的染料终止法来得低得多 。超高通量测序过程中可同时运行高达500,000次的边合成边测序 。

DNA测序

  需要根据多个片段序列所重叠的区域将它们全部组装起来。

454生物科学和焦磷酸测序法

454测序法由454生物科学发明,是一个类似焦磷酸测序法的新方法。2003年向GenBank提交了一个腺病毒全序列 ,使得他们的技术成为Sanger测序法后第一个被用来测生物基因组全序列的新方法。454使用类似于焦磷酸测序的方法,有着相当高的读取速度,大约为5小时可以测两千万碱基对 。

正在开发的测序法

纳米孔DNA测序法

参见

蛋白质定序

已测序的生物

 


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· RNA测序
介绍相较于一个静态的染色体而言,细胞内的转录物组是一个处于不断变化的动态过程。随着现在的下一代基因测序(NGS)技术的发展,使得可测得的DNA碱基覆盖面增加且样本输出的吞吐量增大。有助于对细胞内RNA转录物进行测序,提供包括选择性剪接的转录、转录后的改变、基因融合、突变/SNPs以及基因表达量改变等细节。,RNA测序不仅能检测mRNA的转录,还能观测到包括包括总RNA和小RNA(miRNA、tRNA和核糖体RNA)在内不同尺度的RNA表达谱。RNA测序还能用来确定外显子/内含子的边界,修正之前注释的5"和3"端基因边界。未来的RNA测序研究还包括观察感染时细胞传导路径的变化和癌症中不同基因表达程度。下一代基因测序之前,对转录物组学和基因表达的研究主要基于基因表达芯片(微阵列),后者包含数以千计用于探测靶向序列的DNA探针,可以得到所有表达出转录物的表达谱。基因表达芯片之后,基因表达的系列分
· 桑格测序
原理双脱氧链终止法采用DNA复制原理。Sanger测序反应体系中包括目标DNA片断、脱氧三磷酸核苷酸(dNTP)、双脱氧三磷酸核苷酸(ddNTP)、测序引物及DNA聚合酶等。测序反应的核心就是其使用的ddNTP:由于缺少3"-OH基团,不具有与另一个dNTP连接形成磷酸二酯键的能力,这些ddNTP可用来中止DNA链的延伸。此外,这些ddNTP上连接有放射性同位素或荧光标记基团,因此可以被自动化的仪器或凝胶成像系统所检测到。测序反应过程早期基于Sanger法的测序设置了四个平行的测序反应,每一个反应中分别包括目标片段、DNA聚合酶、测序引物、四种dNTP和一种特定类型萤光(或放射性同位素)标记的ddNTP(即不同的反应中分别为ddATP、ddGTP、ddCTP及ddTTP)。透过这样的配置,在不同的反应中DNA链将会分别在A、G、C及T位中止,并形成不同长度的DNA片断。这些片断随后可被凝胶...
· DNA修复
DNA损伤细胞内正常的代谢活动与环境因素所引起的DNA损伤的发生速率约为每个细胞每天1,000至1,000,000处分子损害。但是许多别的因素能使之达到更高的速率。一个关键的癌相关基因(如肿瘤抑制基因)的一处未修复的损害就能对个体产生灾难性的后果,而这类基因只占人类基因组的6,000,000,000(30亿个碱基对)个碱基的0.000165%。细胞核DNA与线粒体DNA损伤人类细胞和绝大多数的真核细胞的DNA定位于细胞内的两个地方:细胞核内和线粒体内。细胞核DNA(nDNA,nuclearDNA之缩写)大量聚集于染色体;染色体是由DNA和缠绕其上的称为组蛋白的珠状蛋白质组成的。只要细胞要表达其nDNA编码的遗传信息,其相应的染色体区域就要拆开,定位在此处的基因才被表达,之后这一区域又固缩回原来的静态构造。线粒体DNA(mtDNA,mitochondrialDNA之缩写)定位于细胞器线粒体之...
· DNA运算
历史DNA运算最先由南加州大学的伦纳德·阿德曼在1994年实现。Adleman演示了一种将DNA应用于解决七点哈密顿路径问题的概念验证方法。自Adleman的实验以后,学界又取得了许多进展,多种图灵机被证明是可行的。尽管一开始的研究热点集中在解决P/NP问题,但人们旋即意识到此类问题并不是DNA运算的最佳应用场合,以致有多种意见要求寻找杀手级应用。1997年,计算机学家MitsunoriOgihara和生物学家AnimeshRay一道提出了一种组合逻辑电路的评价方法,并描绘了实现方法。2002年,来自WeizmannInstituteofScience的研究者公开了一种由DNA分子和酶,而不是硅组成的计算机器。2004年3月28日,WeizmannInstitute的EhudShapiro,YaakovBenenson,BinyaminGil,UriBen-Dor,和RivkaAdar在自
· DNA复制
DNA的结构DNA通常是一个双链的结构,两条单链互相盘绕从而表现出双螺旋结构。脱氧核糖核苷酸是DNA的单体。DNA的每一条单链都是由四种碱基不同的脱氧核糖核苷酸构成的,这四种碱基即:腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T)。一个核苷酸可以是一磷酸、二磷酸或者三磷酸的,也就是说,一个脱氧核糖连接着一个、两个或者三个磷酸基团。每条单链中相邻的脱氧核糖核苷酸都通过化学反应生成磷酸二酯键相连接,以此形成了DNA双螺旋结构中由磷酸基团和脱氧核糖组成的骨架,而骨架里面既是碱基对。两条单链之间的核苷(即碱基)通过氢键形成碱基对相连。一般情况下,A只与T相连,而C只与G相连。DNA链是具有方向性的,对于DNA的一条单链来说,它的两个末端分别被命名为“3"端”和“5"端”。DNA两条单链的结构之所以被描述为“反向平行双螺旋”,其中的“反向”即指两条单链中,一条链的方向是从3"端到5"端,而另...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信