族谱网 头条 人物百科

伯努利家族

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:611
转发:0
评论:0
世系图参见伯努利盒伯努利分布伯努利数伯努利多项式伯努利检验伯努利原理伯努利定律伯努利微分方程参考伯努利家族在线上《瑞士历史辞典》中的德文、法文或意大利文版词条。

世系图

参见

伯努利盒

伯努利分布

伯努利数

伯努利多项式

伯努利检验

伯努利原理

伯努利定律

伯努利微分方程

参考

伯努利家族在线上《瑞士历史辞典》中的德文、法文或意大利文版词条。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 伯努利试验
来自日常生活的解释伯努利试验指的是单次事件,而这次事件的结果是两个可能性结果中的一个。这样的事件都可以表达成“是或否”("yesorno")问题。例如:硬币掉落后是人头朝上吗?刚出生的小孩是个女孩吗?一个人的双眼是绿色的吗?在有蚊子的地方喷洒杀虫剂,蚊子会死掉吗?一个可能是顾客的人会买我的产品吗?公民(citizen)会投给特定的候选人吗?雇员会投票支持工会吗?因此结果称为“成功”和“失败”,而结果不应该照字面推断。伯努利试验的例子包括:抛硬币。在这里,正面(人头面)通常表示成功而反面(刻字面)表示失败。一枚均匀硬币,按照定义成功机会是一半p=1/2。掷骰子,在这个例子里我们称六是"成功"而其他都是"失败",p=1/6。在四式选择题,答对的机会p=1/4。实施一个政见调查(politicalopinionpoll),随机选择一个投...
· 伯努利数
等幂求和伯努利数Bn是等幂求和的解析解中最为明显的特征,定义等幂和如下,其中m,n≥0:这数列和的公式必定是变数为n,次数为m+1次的多项式,称为伯努利多项式。伯努利多项式的系数与伯努利数有密切关系如下:其中(m+1k)为二项式系数。举例说,把m取为1,我们有1+2+...+n=12(B0n2+2B1+n1)=12(n2+n).{\displaystyle1+2+...+n={\frac{1}{2}}\left(B_{0}n^{2}+2B_{1}^{+}n^{1}\right)={\frac{1}{2}}\left(n^{2}+n\right).}伯努利数最先由雅各布·伯努利研究,棣莫弗以他来命名。伯努利数可以由下列递推公式计算:初值条件为B0=1。伯努利数也可以用母函数技巧定义。它们的指数母函数是x/(e−1),使得对所有绝对值小于2π的x(幂指数的收敛半径),有有时会写成小写bn,以便...
· 约翰·伯努利
大学教育约翰的父亲经营香料事业,是一位成功的商人。父亲很希望约翰跟着他去学做生意,以后接手延续家庭的香料事业。可是,约翰对做生意实在没有什么兴趣。约翰说千说万,终于说服了择善固执的父亲,准许他去学习医术,将来能够悬壶济世。1683年,约翰进入巴塞尔大学,主修医科。但是,约翰打心底并不喜欢学医。空闲的时候,他开始与他哥哥雅各布一起读数学。后来,他们大多数的时间都用在研读刚刚发现的微积分。在那个时代,他们不但最先地研读与了解微积分,而且是最先应用微积分于各种问题的数学家。职业生涯从巴塞尔大学毕业后,约翰迁移至日内瓦,在那里教微分方程。1694年,约翰与(DorotheaFalkner)共结连理。不久后,他成为格罗宁根大学的数学教授。1705年,由于岳父病重,想要与女儿共享天伦之乐。因此,约翰决定返回巴塞尔家乡教书。在归途中,他得到哥哥雅各布因患肺结核过世的噩耗。约翰原本去巴塞尔大学当希腊文教授...
· 伯努利分布
参见概率论伯努利试验伯努利过程概率分布二项分布
· 伯努利双纽线
其它的表示公式伯努利双纽线在极坐标中也有简洁的表示。在双极坐标系,伯努利双纽线的方程也类似:伯努利双纽线的参数方程为:{x=acos2θθ-->cosθθ-->y=acos2θθ-->sinθθ-->,θθ-->∈∈-->[−−-->ππ-->4,ππ-->4]∪∪-->[34ππ-->,54ππ-->]{\displaystyle{\begin{cases}x=a{\sqrt{cos2\theta}}cos\theta\\y=a{\sqrt{cos2\theta}}sin\theta\end{cases}},\theta\in[-{\frac{\pi}{4}},{\frac{\pi}{4}}]\cup[{\frac{3}{4}}\pi,{\frac{5}{4}}\pi]}曲率伯努利双纽线的曲率在直角坐标系中可以表示为...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信