族谱网 头条 人物百科

光学频谱

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:262
转发:0
评论:0
原理复色光中有着各种波长(或频率)的光,这些光在介质中有着不同的折射率。因此,当复色光通过具有一定几何外形的介质(如三棱镜)之后,波长不同的光线会因出射角的不同而发生色散现象,投映出连续的或不连续的彩色光带。这个原理亦被应用于著名的太阳光的色散实验。太阳光呈现白色,当它通过三棱镜折射后,将形成由红、橙、黄、绿、蓝、靛、紫顺次连续分布的彩色光谱,覆盖了大约在390到770纳米的可见光区。历史上,这一实验由英国科学家艾萨克·牛顿爵士于1665年完成,使得人们第一次接触到了光的客观的和定量的特征。光谱的分类按波长区域在一些可见光谱的红端之外,存在着波长更长的红外线;同样,在紫端之外,则存在有波长更短的紫外线。红外线和紫外线都不能为肉眼所觉察,但可通过仪器加以记录。因此,除可见光谱,光谱还包括有红外光谱与紫外光谱。按产生方式按产生方式,光谱可分为发射光谱、吸收光谱和散射光谱。有的物体能自行发光,由...

原理

复色光中有着各种波长(或频率)的光,这些光在介质中有着不同的折射率。因此,当复色光通过具有一定几何外形的介质(如三棱镜)之后,波长不同的光线会因出射角的不同而发生色散现象,投映出连续的或不连续的彩色光带。

这个原理亦被应用于著名的太阳光的色散实验。太阳光呈现白色,当它通过三棱镜折射后,将形成由红、橙、黄、绿、蓝、靛、紫顺次连续分布的彩色光谱,覆盖了大约在390到770纳米的可见光区。历史上,这一实验由英国科学家艾萨克·牛顿爵士于1665年完成,使得人们第一次接触到了光的客观的和定量的特征。

光谱的分类

按波长区域

在一些可见光谱的红端之外,存在着波长更长的红外线;同样,在紫端之外,则存在有波长更短的紫外线。红外线和紫外线都不能为肉眼所觉察,但可通过仪器加以记录。因此,除可见光谱,光谱还包括有红外光谱与紫外光谱。

按产生方式

按产生方式,光谱可分为发射光谱、吸收光谱和散射光谱。

有的物体能自行发光,由它直接产生的光形成的光谱叫做发射光谱。

发射光谱可分为三种不同类别的光谱:线状光谱、带状光谱和连续光谱。线状光谱主要产生于原子,由一些不连续的亮线组成;带状光谱主要产生于分子,由一些密集的某个波长范围内的光组成;连续光谱则主要产生于白炽的固体、液体或高压气体受激发发射电磁辐射,由连续分布的一切波长的光组成。

在白光通过气体时,气体将从通过它的白光中吸收与其特征谱线波长相同的光,使白光形成的连续谱现暗线。此时,这种在连续光谱中某些波长的光被物质吸收后产生的光谱被称作吸收光谱。通常情况下,在吸收光谱中看到的特征谱线会少于线状光谱。

当光照射到物质上时,会发生非弹性散射,在散射光中除有与激发光波长相同的弹性成分(瑞利散射)外,还有比激发光波长长的和短的成分,后一现象统称为拉曼效应。这种现象于1928年由印度科学家拉曼所发现,因此这种产生新波长的光的散射被称为拉曼散射,所产生的光谱被称为拉曼光谱或拉曼散射光谱。

按产生本质

按产生本质,光谱可分为分子光谱与原子光谱。

在分子中,电子态的能量比振动态的能量大50~100倍,而振动态的能量又比转动态的能量大50~100倍。因此在分子的电子态之间的跃迁中,总是伴随着振动跃迁和转动跃迁的,因而许多光谱线就密集在一起而形成分子光谱。因此,分子光谱又叫做带状光谱。

在原子中,当原子以某种方式从基态提升到较高的能态时,原子内部的能量增加了,原子中的部分电子提升到激发态,然而激发态都不能维持,在经历很短的一段随机的时间后,被激发的原子就会回到原来能量较低的状态。在原子中,被激发的电子在回到能量较低的轨道时释放出一个光子,也就是说这些能量将被以光的形式发射出来,于是产生了原子的发射光谱,亦即原子光谱。因为这种原子能态的变化是非连续量子性的,所产生的光谱也由一些不连续的亮线所组成,所以原子光谱又被称作线状光谱。

光谱分析

由于每种元素都有自己的光谱,因此可根据光谱来鉴别物质和确定其化学组成,这种方法被称作光谱分析。因为不同元素的光谱会有不同的位置的颜色的谱线,或者会缺少某些谱线,但含有相同元素的物质的谱线却总是会在同一个位置具有相同颜色的谱线。光谱分析就是利用这个原理来分析物质的元素组成的。

参见

频谱

电磁波

电磁波谱

光学


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 频谱
简介信号若随着时间变化,且可以用幅度来表示,都有其对应的频谱。包括可见光(颜色)、音乐、无线电波、振动等都有这様的性质。当这些物理现象用频谱表示时,可以提供一些此信号产生原因的相关信息。例如针对一个仪器的振动,可以借由其振动信号频谱的频率成分,推测振动是由哪些元件所造成。一些信号的频谱可见光铁在可见光部分的发射光谱光源由不同的颜色所组成,各颜色的光有不同的频率,所占的比例可能也有不同。三棱镜透过折射的方式,将不同频率的光折射到不同的位置,因此可以看到不同颜色的光。同样的也可以将一般光源用三棱镜处理,投映出连续的或不连续的彩色光带。光带的颜色表示其频率,而明暗可表示其比例的多寡,这就是光的频谱,一般称为光谱。若所有频率的颜色含量都一様,其合成的颜色会是白色,而其幅度对应频率的频谱会是一条水平线。因此一般会将频谱为水平线的信号以“白色”来称呼。声音音源也可以由许多不同频率的声音组成。不同频率会...
· 光学
经典光学在量子光学的重要性被揭示之前,光学的基本理论主要是经典电磁场理论以及它在光学领域的高频近似(英语:Highfrequencyapproximation)。经典光学可以分成两个主要分支:几何光学与物理光学。几何光学光线在三棱镜中色散的想像图几何光学,又称射线光学,描述了光的传播。在几何光学中,光被称作是"射线"(光线)。光线会在两种不同介质的界面改变传播方向,并有可能在折射率随位置变化的介质中发生曲线弯折的现象。几何光学中的“光线”是抽象的物体,它的前进方向垂直于光波的波前。几何光学给出了光线通过光学系统的传播规律,以此可以预测其实际波前的位置。费马原理是几何光学的基本定理:光传播的路径是光以最短时间通过的路径,由此可以推导出许多几何光学的定律。考虑一个由透镜、反射镜及棱镜组合而成的光学系统,用几何光学可以说明其中的反射、折射等现象,需要注意的是,几何光学简化了光学理论,因此它无法解...
· 光学现象
进阶读物ThomasD.RossingandChristopherJ.Chiaverina,LightScience:PhysicsandtheVisualArts,Springer,NewYork,1999,hardback,ISBN0-387-98827-0RobertGreenler,Rainbows,Halos,andGlories,Elton-WolfPublishing,1999,hardback,ISBN0-89716-926-3PolarizedLightinNature,G.P.Können,TranslatedbyG.A.Beerling,CambridgeUniversityPress,1985,hardcover,ISBN0-521-25862-6M.G.J.Minnaert,LightandColorintheOutdoors,ISBN0-387-97935-2J...
· 视光学
验光方法从验光时眼球的调节状态,分扩瞳验光与小瞳验光。扩瞳验光常见于儿童,事先由有处方权的医生开具药物,使用阿托品复方托呲卡胺等睫状肌麻痹药物滴眼,使调节处于静止状态且瞳孔散大,然后进行验光。小瞳验光是在不散瞳情况下验光,常用于散瞳验光后的复查和成人验光。从验光方法可分他觉验光和主觉验光。他觉验光是指验光人员使用检影镜(Retinoscopy)、电脑验光仪(Auto-Refractor)等工具直接观察病人瞳孔中的光移动的客观变化,得出其屈光度数的方法。主觉验光是指验光人员使用综合验光仪(Phoropter)等工具,根据病人主观反映的视力变化,检查得出其屈光度数的方法。
· 光学双星
历史大熊座的开阳在1650年首度被乔万尼·巴特斯达·里奇奥利登录为双星(但贝内代托·卡士德里和伽利略可能在更早)。很快就确认了其它的双星系统:罗伯特·胡克在1664年发现的第一个双星系统,白羊座γ;而南十字座明亮的十字架二在1685年被冯提尼发现是双星。从此之后,对双星的搜寻在天空中被很彻底的执行,不只是明亮的双星,还下探至视星等9.0等的极限。在北半球的天空中,比9等亮的恒星中,每18颗就至少有一颗是双星,可以使用口径36-英寸(910-毫米)的望远镜分辨出来。类别不相关的光学双星和联星被混编在同一本星表中是有其历史上的事实和原因。当开阳被发现是联星时,仍很难确认一对双星是联星,还仅仅是光学双星。望远镜、光谱、和摄影的改进,都是用来区分这两者的基本工具。当它被确认是视联星后,开阳本身的结构被发现是光谱联星。此外,开阳和辅又组合成光学双星,两者相距3光年。它们被怀疑,但又没有绝对的证据,能...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信