电磁场的动力学理论
麦克斯韦原本的方程
在这篇论文的标题为电磁场一般方程的第三章里,麦克斯韦列出了涉及二十个未知量的二十个方程,在那时期,称为麦克斯韦方程组。由于矢量微积分尚在发展中,这二十个方程都是以分量形式表示,其中,有十八个方程可以用六个矢量方程集中表示(对应于每一个直角坐标,有一个方程),另外剩下的两个是标量方程。所以,以矢量标记,麦克斯韦方程组可以表示为八个方程。1884年,从这八个方程,奥利弗·亥维赛重新编排出四个方程,并且称这一组方程为麦克斯韦方程组。今天广泛使用的麦克斯韦方程组就是亥维赛编成的这一组方程。
亥维赛版本的麦克斯韦方程组是以现代矢量标记法写出。在原先版本的八个方程里,只有一个方程,高斯定律的方程(G),完整不变地出现于亥维赛版本。另外一个在亥维赛版本的方程,乃是由总电流定律的方程(A)与安培环路定理的方程(C)共同凑合而成。这方程包含了麦克斯韦的位移电流,是安培环路定理的延伸。
以矢量标记,麦克斯韦方程组的原先版本的八个方程,分别写为
关于介质的性质,麦克斯韦并没有试着处理比较复杂的状况。他表述的主要是线性、均向性、非色散性物质;他也稍微谈到一些有关异向性的晶体物质的问题。
值得注意的是,麦克斯韦将 μ μ -->v× × -->H{\displaystyle \mu \mathbf {v} \times \mathbf {H} } 项目包括于他的合势方程(D)。这项速度达一个以速度 v{\displaystyle \mathbf {v} } 移动的导体所感受到的单位电荷的磁场力而产生的动生电动势。这意味着合势方程(D)表达了洛伦兹力。这方程最先出现为论文《论物理力线》的方程(77),比洛伦兹想到这问题早了很多年。现在,洛伦兹力方程列为麦克斯韦方程组之外的额外方程,并没有被包括在麦克斯韦方程组里面。
光波是电磁波
麦克斯韦,电磁学之父
在论文《电磁场的动力学理论》里,麦克斯韦应用了的1861年论文《论物理力线》第三节里对于安培环路定理的修正,将位移电流与其它已成立的电磁方程合并,因而得到了描述电磁波的波动方程。最令人振奋的是,这方程所描述的波动的波速等于光波的速度。他于是说:
麦克斯韦在对于光波是一种电磁现象的推导里,并没有使用法拉第电磁感应定律,而是使用方程(D)来解释电磁感应作用。由于不考虑导体的运动,项目 μ μ -->v× × -->H{\displaystyle \mu \mathbf {v} \times \mathbf {H} } 可以。事实上,他的八个方程里,并没有包括法拉第电磁感应定律方程在内。
由于麦克斯韦的推导比较冗长,现代的教科书已不再采用这推导,改而选择另一种比较简易了解的推导,这推导主要是使用麦克斯韦-安培定律(安培环路定理的延伸)与法拉第电磁感应定律。
麦克斯韦的推导
假设电磁波是一个平面波,以波速 V{\displaystyle V} 向正z-轴的方向传播于某介质,则描述此电磁波的每一个函数都拥有参数 w=z− − -->Vt{\displaystyle w=z-Vt} 。根据磁矢量定义式(B),
其中,B =def μ μ -->H{\displaystyle B\ {\stackrel {def}{=}}\ \mu \mathbf {H} } 是磁感应强度的定义式。
注意到 Bz=0{\displaystyle B_{z}=0} , 还有,B{\displaystyle \mathbf {B} } 垂直于平面波的传播方向,这电磁波是个横波。
根据安培环路定理(C),
假设介质是个绝缘体,传导电流密度 J{\displaystyle \mathbf {J} } 等于零,则根据总电流定律(A)和电弹性方程(E),
假设导体的速度等于零,即动生电动势项目等于零,则根据合势方程(D),
再应用磁矢量定义式(B),就可以得到磁场的波动方程:
链式法则要求
所以,
传播的速度为
设定磁导率为磁常数μ μ -->0{\displaystyle \mu _{0}} ,电容率为电常数ϵ ϵ -->0{\displaystyle \epsilon _{0}} ,则传播速度是自由波传播于自由空间的速度。
类似地,应用合势方程(D),可以得到电场的波动方程:
注意到,Ez{\displaystyle E_{z}} 可能不等于零。在尚未更清楚了解电荷密度的性质之前,麦克斯韦不排除电场波为纵波的可能性。
现代推导
在自由空间里,亥维赛版的麦克斯韦方程组的四个微分方程为
其中,μ μ -->0{\displaystyle \mu _{0}} 是磁常数,ε ε -->0{\displaystyle \varepsilon _{0}} 是电常数。
分别取公式 (2) 、(4) 的旋度,
应用一则矢量恒等式
其中,Z{\displaystyle \mathbf {Z} } 是任意矢量函数。
将公式 (1) 、(3) 代入,即可得到波动方程:
其中,c=c0=1μ μ -->0ε ε -->0=2.99792458× × -->108{\displaystyle c=c_{0}={1 \over {\sqrt {\mu _{0}\varepsilon _{0}}}}=2.99792458\times 10^{8}} [米/秒]是电磁波传播于自由空间的速度。
参阅
《论法拉第力线》
电磁波方程
弯曲时空中的麦克斯韦方程组
非齐次的电磁波方程
麦克斯韦应力张量
麦克斯韦方程组的历史
电磁学与经点光学时间表(Timeline of electromagnetism and classical optics)
参考文献
Maxwell, James C.; Torrance, Thomas F., A Dynamical Theory of the Electromagnetic Field, Eugene, OR: Wipf and Stock, March 1996, ISBN 1-57910-015-5
Niven, W. D., The Scientific Papers of James Clerk MaxwellVol. 1, New York: Dover, 1952
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值