族谱网 头条 人物百科

胡克定律

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:3179
转发:0
评论:0
弹簧方程胡克定律能精确地描述普通弹簧在变形不太大时的力学行为。胡克定律应用的一个常见例子是弹簧。在弹性限度内,弹簧的弹力F{displaystyleF}和弹簧的长度变化量x{displ

弹簧方程

胡克定律

  胡克定律能精确地描述普通弹簧在变形不太大时的力学行为。

胡克定律应用的一个常见例子是弹簧。 在弹性限度内,弹簧的弹力 F {\displaystyle F} 和弹簧的长度变化量 x {\displaystyle x} 成线性关系,即:

k {\displaystyle k} :弹簧的劲度系数( 倔强系数 ),由材料性质、几何外形决定,负号:弹簧产生的弹力与其伸长(压缩)的方向相反,这种弹力称为 回复力 ,表示它有使系统回复平衡的趋势。满足上式的弹簧称为 线性弹簧 。

通过变形储存在弹簧中的弹性势能为:

该式可以理解为弹簧在压缩过程中逐小段做负功的极限累加,数学上就是作用力对作用距离的定积分(注意势能恒为正值)。

势能函数在 U − − --> x {\displaystyle U-x} 平面内抛物线抛物线。随着弹簧沿 x {\displaystyle x} 方向变形(无论拉伸还是压缩),势能相应增加。非平衡状态时的势能总是高于平衡状态( x = 0 {\displaystyle x=0} )时的势能。所以弹簧力的作用总是使系统向势能减少的方向运动,正如在半山上引力在引力的作用下总是要往山下(引力势能小的地方)滚一样。

如果将一块质量悬挂在这样一个弹簧的末端,然后对它施加一个轴向扰动(可以是敲打或拉开一段距离突然松手),质量和弹簧组成的系统将会以下列 固有角频率 (又称 共振角频率 )开始振动:

胡克定律

  低碳钢的应力-应变曲线。胡克定律描述的仅为原点到屈服点之间的那一段陡峭的直线。 1. 最大强度 2.屈服强度 3. 破坏点 4. 应变硬化区 5. 颈缩区

若要对处于三维应力状态下的材料进行描述,需要定义一个包含81个弹性常数的四阶张量 c ijkl 以联系二阶应力张量σ ij 和应变张量(又称格林张量)ε kl 。

由于应力张量、应变张量和弹性系数张量存在对称性(应力张量的对称性就是材料力学中的剪应力互等定理),81个弹性常数中对于最一般的材料也只有21个是独立的。

由于应力的单位量纲(力/面积)与压强相同,而应变是 无量纲 的,所以弹性常数张量 c ijkl 中每一个元素(分量)都具有压强的量纲。

对于固体材料大变形力学行为的描述需要用到新胡克型固体模型(neo-Hookean solids)和Mooney-Rivlin型固体模型。

各向同性材料

胡克定律的张量形式

(在牛顿流体中的类比参见 粘性 词条。)

各向同性 材料( isotropic materials ,也译作 等向性 材料)顾名思义就是(力学)性能沿空间中不同方向不发生变化的材料。显然描述这种材料的物理方程的形式不应随坐标系的旋转而改变。材料内部的应变张量也应该是对称的。由于任何张量的迹都是一个与所选坐标系无关的量,所以可以完备地将一个对称张量分解为一个 常张量 (即除主对角线上的分量以外均为0的张量)和一个 迹为0的对称张量 之和。即:

其中 δ δ --> i j {\displaystyle \delta _{ij}} 是一个二阶单位张量(通过克罗内克δ记号来定义)。上式右边第一项是一个常张量,称为应变张量的 静水压分量 ;右边第二项是一个迹为0的对称张量,称为 剪应变分量 。

对于各向同性材料,胡克定律最普遍的形式是将应力张量写成上述两个应变张量分量的线性组合:

式中 K 称为体积模量, G 是材料的剪切模量。

利用弹性力学理论中的弹性常数和实际工程应用中使用的弹性模量之间的关系,以上的关系还可写成其他形式,譬如下面这组方程用应力张量来表示了应变张量:

{ ε ε --> 11 = 1 Y ( σ σ --> 11 − − --> ν ν --> ( σ σ --> 22 + σ σ --> 33 ) ) ε ε --> 22 = 1 Y ( σ σ --> 22 − − --> ν ν --> ( σ σ --> 11 + σ σ --> 33 ) ) ε ε --> 33 = 1 Y ( σ σ --> 33 − − --> ν ν --> ( σ σ --> 11 + σ σ --> 22 ) ) ε ε --> 12 = σ σ --> 12 2 G ε ε --> 13 = σ σ --> 13 2 G ε ε --> 23 = σ σ --> 23 2 G {\displaystyle {\begin{cases}\varepsilon _{11}={\cfrac {1}{Y}}\left(\sigma _{11}-\nu (\sigma _{22}+\sigma _{33})\right)\\\varepsilon _{22}={\cfrac {1}{Y}}\left(\sigma _{22}-\nu (\sigma _{11}+\sigma _{33})\right)\\\varepsilon _{33}={\cfrac {1}{Y}}\left(\sigma _{33}-\nu (\sigma _{11}+\sigma _{22})\right)\\\varepsilon _{12}={\cfrac {\sigma _{12}}{2G}}\\\varepsilon _{13}={\cfrac {\sigma _{13}}{2G}}\\\varepsilon _{23}={\cfrac {\sigma _{23}}{2G}}\end{cases}}}

式中 Y 称为杨氏模量, ν ν --> {\displaystyle \nu } 为泊松比。

 

正交各向异性材料

正交各向异性材料是非常常见的一种材料模型,这种材料有三个互相正交的材料对称面;其三维胡克定理可以用矩阵表示为

( σ σ --> 11 σ σ --> 22 σ σ --> 33 σ σ --> 12 σ σ --> 23 σ σ --> 31 ) = ( C 11 C 12 C 13 0 0 0 C 12 C 22 C 23 0 0 0 C 13 C 23 C 33 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 55 0 0 0 0 0 0 C 66 ) ( ε ε --> 11 ε ε --> 22 ε ε --> 33 ε ε --> 12 ε ε --> 23 ε ε --> 31 ) {\displaystyle {\begin{pmatrix}\sigma _{11}\\\sigma _{22}\\\sigma _{33}\\\sigma _{12}\\\sigma _{23}\\\sigma _{31}\\\end{pmatrix}}={\begin{pmatrix}C_{11}&C_{12}&C_{13}&0&0&0\\C_{12}&C_{22}&C_{23}&0&0&0\\C_{13}&C_{23}&C_{33}&0&0&0\\0&0&0&C_{44}&0&0\\0&0&0&0&C_{55}&0\\0&0&0&0&0&C_{66}\end{pmatrix}}{\begin{pmatrix}\varepsilon _{11}\\\varepsilon _{22}\\\varepsilon _{33}\\\varepsilon _{12}\\\varepsilon _{23}\\\varepsilon _{31}\\\end{pmatrix}}}

此式中独立的材料常数为9个。 注意式中三个剪切应力和三个剪切应变的顺序,不同教科书可能会不同的选择。

各向同性材料也是正交各向异性材料的一种特例,即有无数个对称平面的情况。这时独立材料常数只有 2 {\displaystyle 2} 个,即杨氏模量和泊松比。

参见

杨氏模量

参考文献

[1] Y. C. Fung (冯元桢), Foundations of Solid Mechanics , Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1965

[2] A.C. Ugural, S.K. Fenster, Advanced Strength and Applied Elasticity , 4th ed

 


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
扫一扫添加客服微信