族谱网 头条 人物百科

伽利略定位系统

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:731
转发:0
评论:0
系统目的建造此系统的目的有以下几点:为用户提供更准确的数据,比GPS管制更少;由于欧洲纬度较高,系统加强对高纬度地区的覆盖,包括挪威及瑞典等地区;因而,改以将8枚卫星布局在3条轨道上的方式。减低对全球定位系统的依赖,借由实际组建预先累积操作经验,尤其是在发生战争时,可提供非美国盟友有机会使用军事定位。历史主要目的伽利略系统的的三大投资方(德国、法国和意大利)对该系统的发展提出了不同的目标。1999年,这些目标被这三国工程师组成的联合小组精简为一个。2003年5月26日,欧盟和欧空局正式批准了这个项目的第一阶段计划。伽利略系统主要用于民用,而美国的GPS系统、俄罗斯的格洛纳斯系统和中国的北斗系统更加偏向军事用途。伽利略系统仅仅在一些极端情况下才会因为军事目的而关闭(比如武装冲突)。对于军用和民用终端来说,该系统都提供最高的定位精度。资金2001年11月,有几份据称是该项目“年度”销售预测的表...

系统目的

建造此系统的目的有以下几点:

为用户提供更准确的数据,比GPS管制更少;

由于欧洲纬度较高,系统加强对高纬度地区的覆盖,包括挪威及瑞典等地区;因而,改以将8枚卫星布局在3条轨道上的方式。

减低对全球定位系统的依赖,借由实际组建预先累积操作经验,尤其是在发生战争时,可提供非美国盟友有机会使用军事定位。

历史

主要目的

伽利略系统的的三大投资方(德国、法国和意大利) 对该系统的发展提出了不同的目标。1999年,这些目标被这三国工程师组成的联合小组精简为一个。2003年5月26日,欧盟和欧空局正式批准了这个项目的第一阶段计划。伽利略系统主要用于民用,而美国的GPS系统、俄罗斯的格洛纳斯系统和中国的北斗系统更加偏向军事用途。伽利略系统仅仅在一些极端情况下才会因为军事目的而关闭(比如武装冲突 )。对于军用和民用终端来说,该系统都提供最高的定位精度。

资金

2001年11月,有几份据称是该项目“年度”销售预测的表格被揭发,它们实际上是“累计”销售预测,所谓的年销售额实际上包含了以往年份的销售总额。然后,欧盟委员会对伽利略系统下一阶段的投资遇到了麻烦。人们对这个高达数十亿欧元的预测错误的关注,引发了欧盟委员会和其他相关组织普遍的担忧,人们开始怀疑伽利略系统并不能产生之前向投资者和决策者预示的那么多收益 。2002年1月17日,伽利略系统的一名发言人表示,由于美国的压力以及经济问题,伽利略系统的计划“接近死亡” 。

然而,几个月后事情出现了转机。欧盟成员国认为,在政治冲突中拥有一个不会被美国轻易关闭的卫星定位授时系统是很重要的 。

欧盟与欧空局于2002年3月同意为该计划注资,并计划于2003年审核该报告(最终于2003年5月26日完成)。按计划,这一阶段持续到2005年,需要的初始投资预估为11亿欧元。该项目所需的卫星(需30颗)计划于2011年至2014年之间发射,并开始建造、运行该系统,最终于2019年转为民间控制。这份报告预估伽利略系统最终将花费30亿欧元,这包括了地球上的基础设施,它们将于2006年至2007年间建造完成。按照这份投资计划,三分之二的资金来自私人企业及个人投资,剩下的部分由欧盟和欧空局来承担。伽利略系统的 开放服务 提供给所有安装有用户免费使用,只需要用户安装一个兼容的接收器即可。付费用户可以使用经过加密的大宽带高精度 商务服务 。到了2011年初,该项目的实际花费已超出了最初预算的50% 。

德国航空航天中心对伽利略系统的注资是最多的,它位于诺伊斯特雷利茨的地球观测中心、通信与导航研究院对伽利略系统的研发与应用是至关重要的。

与美国的紧张关系

伽利略定位系统

 美国国防部副部长保罗·沃尔福威茨于2001年12月写给欧盟成员国部长的一封信,表达了美国对伽利略系统的反对态度。

欧盟的伽利略系统旨在建立一个向所有用户开放的民用全球卫星导航系统。GPS是美国的军用全球卫星导航系统,为美国军事用户提供高精度的定位服务,同时也为其他用户提供低精度定位服务。GPS可以在其军用信号(M波段)不被干扰的情况下关闭民用信号。建造伽利略系统的一个初衷便是欧盟担心美国会在政治冲突中禁止其他用户使用GPS信号。

伽利略系统的目的是为所有用户提供尽可能高的定位精度(比GPS还高),因此,美国担心其敌人会利用伽利略系统的信号对美国及其盟友进行军事打击(一些武器使用卫星导航系统进行制导)。伽利略系统最初选用的频率使得美国无法在不干扰GPS信号的的情况下屏蔽掉伽利略系统。美国打算在阻止敌人使用卫星导航系统(GNSS)的同时自己依然能使用GPS系统。当有报道指出中国对伽利略系统也很有兴趣后,美国官方对此更是担忧。

一名不愿透露姓名的欧盟官员称,美国官员暗示,如果敌人在冲突中使用装备了伽利略系统的武器攻击美军,美国也许会考虑击落伽利略卫星 。欧盟的立场是,伽利略定位系统是中立的技术,可以被任何国家、个人使用。开始时,欧盟官方并不想改变伽利略系统的计划,但是最终还是达成了妥协,伽利略系统改用另一种频率。这将使得对一个系统的屏蔽不会影响到另一个系统(屏蔽伽利略系统的同时不影响GPS,或者屏蔽GPS不影响伽利略),这使得美国在冲突中拥有巨大的优势,因为他们的电子战能力占优势 。

GPS和伽利略系统

应美国军方的要求,GPS使用了 选择可用性机制 ( 英语 : Selective Availability ) (SA),其定位信息被故意加入了误差,这是欧盟意图独立发展伽利略系统的一个原因。GPS系统在全球范围内广泛用于民用,包括飞机导航和着陆设备,伽利略系统的支持者认为这些民用设施不能完全依赖于一个有漏洞的系统。

2000年5月2日,时任美国总统比尔·克林顿停止了GPS的SA机制。2001年底,管理GPS的机构证实他们将不再启用选择可用性机制(SA) 。但这时的GPS系统仍然具备选择可用性能力,到2007年9月19日,美国国防部宣布,新的GPS卫星不再具备实施SA机制的能力 ;声明称,将于2009年发射的Block IIF系列卫星,以及后续的所有GPS卫星都不支持SA机制。所有的老式卫星将在 Block IIIA ( 英语 : Block IIIA ) 计划中被替换掉,届时,GPS系统将再也不能实施SA机制。这个现代化的项目包含了一些标准化的功能,使得第三代GPS系统能和伽利略系统合作工作,另外,利用这些标准可以开发出同时使用GPS和伽利略系统的定位终端,这将构建出一个更加精确的全球卫星导航系统。

与美国的合作

2004年6月,欧盟与美国签署了协议,同意在伽利略系统中使用“ 二进制偏置载频 ( 英语 : Binary Offset Carrier ) 1.1”标准,就此GPS和伽利略系统互相兼容,这也使得人们有可能在将来同时使用这两个系统进行定位。

最早的试验卫星

伽利略系统的第一颗试验卫星 GIOVE-A ( 英语 : GIOVE-A ) 于2005年12月发射,随后,第二颗测试卫星 GIOVE-B ( 英语 : GIOVE-B ) 于2008年4月发射。在轨验证阶段完成后(IOV),有更多的卫星被发射升空。2007年11月30日,来自欧盟成员国的27个交通部长达成协议,伽利略系统将在2013年投入运营 ,但是,会后的新闻稿表明,它将被推迟到2014年 。

再次注资,管理问题

2006年中,为伽利略系统注资的政府社会资本共同体瓦解,欧盟委员会决定将伽利略系统国有化 。

2007年年初,欧盟还未决定如何负担这个项目的经费,据说伽利略系统由于缺乏公共经费支持陷入了“深层次的危机”。当时只有一颗测试卫星被发射升空,德国交通部长Wolfgang Tiefensee特别担忧财团在争论中结束该项目 。

2007年6月13日,欧盟讨论了一个方案,在下一年从相互竞争的经费中削减出五亿四千八百万欧元来用到其他财政项目上 ,此举将有可能部分满足伽利略导航系统的开支。欧盟的研究与开发计划有可能因为经费短缺而被终止。

2007年11月,欧盟同意将从农业和行政预算中重新分配资金 ,以降低招标标准来邀请更多的企业来投资伽利略系统 。

2008年4月,欧盟的交通部长批准了伽利略系统实施条例。这使得欧盟从农业和行政预算中拨款34亿欧元用来招标 ,以启动地面站和卫星的建设。

2009年6月,欧洲审计院发布的一份报告指出,管理不力、严重拖延和预算超支这些问题,导致了项目于2007年停摆,并导致了进一步的延迟和失败 。

2010年,智库“ 开放欧洲 ( 英语 : Open Europe ) ”估计,伽利略系统从启动到建成后20年的花费共计222亿欧元,这些经费将完全由纳税人来承担。根据原先在2000年做出的估算,该系统将花费77亿欧元,纳税人承担其中的26亿,其余由私人投资者承担 。

2009年11月,伽利略系统在法属圭亚那库鲁航天中心的地面站正式落成 。

按计划,前四颗“在轨验证卫星”(IOV)将于2011年下半年发射,“完全运行能力卫星”(FOC)将于2012年年末发射。

2010年3月,据证实,由于伽利略系统的经费有限,到2014年最多能提供4颗“在轨验证卫星”和14颗“完全能力卫星”。有人提议就使用这18颗卫星组网,对此,欧盟委员会卫星导航项目的主管Paul Verhoef举了个例子来说明经费短缺的后果有多严重:“直观的说,在这种情况下,一年中将有3个星期没有导航信号”。

2010年7月,欧盟委员会评估,伽利略项目的额外费用将上升到15亿-17亿欧元,项目的建成日期要推迟到2018年。伽利略系统建成后,政府每年还需要补贴7.5亿欧元 。另外,还需19亿欧元将卫星数量补充到30颗(27颗工作卫星,3颗备用卫星) 。

2010年12月,欧盟部长在布鲁塞尔举行投票,将捷克共和国的布拉格作为伽利略系统的总部 。

2011年1月,据估计,截止2020年各项基础设施的花费将达到53亿欧元。就在这个月,维基解密透露,德国卫星公司 OHB-System ( 英语 : OHB-System ) 的CEO,Berry Smutny说伽利略系统“是一个主要服务法国利益的愚蠢计划” 。BBC获悉,2011年伽利略系统将获得5亿欧元用于采购,使用数年时间将18颗工作卫星增加为24颗 。

伽利略定位系统

  Galileo launch on a Soyuz rocket, 21 October 2011

2011年10月21日,伽利略的前两颗在轨验证卫星由 联盟ST-B ( 英语 : Soyuz-2 (rocket)#Soyuz 2.1b ) 火箭在圭亚那航天中心发射 ,另外两颗于2012年10月12日发射。

另外22颗“完全能力卫星”从2012年开始采购,其中的前四对卫星分别于2014年8月22日,2015年3月27日,2015年9月11日,2015年12月17日发射 。

伽利略定位系统

  浅蓝线的伽利略系统

伽利略定位系统

  浅蓝信道的伽利略

伽利略定位系统

 系统分析架构

国际参与

2003年9月,中国加入了伽利略计划,并将以后为该项目投资2.3亿欧元(约合23.4亿元人民币) 。

2004年7月,以色列与欧盟签订了协议,成为了伽利略系统的合作伙伴。

2005年6月3日,据报道,欧盟与乌克兰签署了一份协议,乌克兰也加入到了伽利略计划。

2005年12月,摩洛哥加入了伽利略计划。

2006年12月,中国选择独立自主开发北斗导航系统。 早期,伽利略系统被看作是一个政府财政参与的私营项目,项目主管积极邀请中国加入,这样在短期内可以获得中国的投资,从长远看还能在中国的定位授时市场获得独特优势。然而,由于欧盟委员会的安全与技术独立性政策,中国实际上被伽利略系统排除在外,中国之前的投资也没有得到任何回报。这促使中国决定建设自己的全球定位系统——北斗卫星导航系统。

2007年11月30日,欧盟的27个成员国一致同意将推进伽利略项目的建设,该计划基于德国和意大利提出的方案。在第一轮投票中,西班牙并不赞成该方案,但在当天的晚些时候还是批准了。这次会议大大提高了伽利略项目的可行性,欧盟执行委员会曾经说过:如果到2008年1月还未就伽利略系统达成任何协议,那么这个陷入长期困扰的项目实际上将会终结。 2009年4月3日,挪威也加入了伽利略项目,承诺将投入6980万欧元用于开发,并允许本国的企业投标建设合同。尽管挪威不是欧盟的成员,但其是欧空局的成员。

2013年12月18日,瑞士签署了一份合作协议,全面参与伽利略计划,并为2008年到2013年之间的费用补交了8000万欧元。作为欧空局的成员,瑞士之前已经参与了伽利略项目,提供了本国最先进的 氢微波激射器 ( 英语 : hydrogen-maser ) 时钟。在加入欧盟研究框架后,瑞士在2014到2020年之间承担的财政将根据标准公式来计算。

2005年9月7日,印度也与欧盟签约,加入“伽利略计划”,参与建设基于欧洲地球同步卫星导航增强服务系统(EGNOS) 的区域增强系统 。

2006年9月9日,韩国同欧盟签订了有关韩国参与伽利略计划的协定 。

2006年12月12日,欧盟与摩洛哥签署了伽利略计划的合作协议 。

除此之外,不少国家如阿根廷、澳大利亚、巴西、加拿大、智利、日本、马来西亚、墨西哥、挪威、巴基斯坦、俄罗斯等,也有可能加入“伽利略计划”。

系统概述

卫星

数量: 30颗

离地面高度: 23,222公里 (MEO)

三条轨道,56°倾角 (每条轨道将有九颗卫星运作,最后一颗作后备)

卫星寿命: 12年以上

卫星重量: 每颗675公斤

卫星长阔高: 2.7m x 1.2m x 1.1m

太阳能集光板阔度: 18.7m

太阳能集光板功率: 1500W

服务

“伽利略系统”将提供以下四种导航服务:

开放服务 (Open Service):开放服务提供任何人自由使用,开放服务的信号将会广播1164-1214MHz 及 1563-1591MHz 两个频带上。同时接收两个频带的信号水平误差<4米,垂直误差<8米,如果只接收单一频带仍然有 <15米的水平误差 及 <35米的垂直误差与GPS 的 C/A 码相当。

商业服务 (Commercial Service)

公共规范服务 (Public Regulated Service)

生命安全服务 (Safety of Life Service)

概述

每颗卫星都有两个 铷原子钟 ( 英语 : rubidium atomic clocks ) 和两个被动 氢原子微波激射器 ( 英语 : Hydrogen maser ) 时钟,它们对于卫星导航系统是至关重要的,另外伽利略卫星还包括一系列其他组件。这些时钟将提供精确的时间信号,可以计算出这些信号从发出到接收花费了多长时间。利用不同卫星发射来的信息,结合 三边测距原理 ( 英语 : trilaterating ) ,就可以计算出接收器所在的位置。

进度

2011年10月21日,第一组实验卫星IOV PFM和FM2发射入轨成功。

2012年10月12日,第二组实验卫星IOV FM3和FM4发射入轨成功。

2014年8月22日,第三组卫星FOC FM1和FM2发射成功,但未正确入轨。

2014年11月,FOC FM1在经过一系列机动后正确入轨并校正。

参见

多时段定位法

北斗卫星导航系统(BDS)

参考文献

The Galileo Project – GALILEO Design consolidation, European Commission, 2003

Guenter W. Hein, Jeremie Godet, et al.:Status of Galileo Frequency and Signal Design, Proc.IONGPS 2002.

Jean-Luc Issler, Gunter W. Hein, et al.:Galileo Frequency and Signal Design. GPS World, vol. 14, no. 6, June, 2003, pp. 30–37.

Dee Ann Divis:Military role for Galileo emerges. GPS World, May 2002, Vol. 13, No. 5, p. 10.

Dr Richard North: Galileo - The Military and Political Dimensions. 2004.

Jaizki Mendizabal; Roc Berenguer; Juan Melendez.GPS and Galileo. McGraw Hill. 2009. ISBN 978-0-07-159869-9.

延伸阅读

Psiaki, M. L., "Block Acquisition of weak GPS signals in a software receiver", Proceedings of ION GPS 2001, the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, Utah, 11–14 September 2001, pp. 2838–2850.

Bandemer, B., Denks, H., Hornbostel, A., Konovaltsev, A., "Performance of acquisition methods for Galileo SW receivers", European Journal of Navigation, Vol.4, No. 3, pp 17–9, July 2006

Van Der Jagt, Culver W. Galileo : The Declaration of European Independence : a dissertation (2002). CALL #JZ1254 .V36 2002, Description xxv, 850 p. : ill. ; 30 cm. + 1 CD-ROM

 


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 全球定位系统
GPS系统发展历程自1978年以来已经有超过50颗GPS和NAVSTAR卫星进入轨道.民间车用GPS装置前身GPS系统的前身为美军研制的子午仪卫星定位系统(英语:Transit_(satellite)),1958年研制,1964年正式投入使用。该系统用5到6颗卫星组成的卫星网工作,每天最多绕过地球13次,但无法给出高度信息,在定位精度方面也不尽如人意。然而,子午仪系统使得研发部门对卫星定位取得了初步的经验,并验证了由卫星系统进行定位的可行性,为GPS系统的研制打下基础。由于卫星定位显示出在导航方面的巨大优越性及子午仪系统存在对潜艇和舰船导航方面的巨大缺陷,美国海陆空三军及民用部门都感到迫切需要一种新的卫星导航系统。为此,美国海军研究实验室提出了名为Tinmation,用12到18颗卫星组成,10000公里高度的全球定位网计划,并于1967年、1969年和1974年各发射了一颗试验卫星,在这...
· 辅助全球卫星定位系统
外部链接Radio-Electronics.ComArticlefromGPSWorld-AssistedGPS:ALow-InfrastructureApproachMobile01-Nokia6110Navigatortestreview
· 伽利略变换
平移伽利略变换示意图伽利略变换建基于人们加减物体速度的直觉。在其核心,伽利略变换假设时间和空间是绝对的。这项假设在洛伦兹变换中被舍弃,因此就算在相对论性速度下,洛伦兹变换也是成立的;而伽利略变换则是洛伦兹变换的低速近似值。以下为伽利略变换的数学表达式,其中(x,y,z,t)和(x′,y′,z′,t′)分别为同一个事件在两个坐标系S和S"中的坐标。两个坐标系以相对均速运行(速度为v),运行方向为x和x′,原点在时间为t=t"=0时重合。最后一条方程式意味着时间是不受观测者的相对运动影响的。利用线性代数的术语来说,这种变换是个错切,是矩阵对向量进行变换的一个过程。当参考系只沿着x轴移动时,伽利略变换只作用于两个分量:虽然在伽利略变换中没有必要用到矩阵表达法,但是用了矩阵就可以和狭义相对论中的变换法进行比较。三种伽利略变换沿着一个加速中观测者的世界线所看到的时空。纵轴为时间,横轴为距离,虚线为观...
· 伽利略卫星
历史发现伽利略·伽利莱,伽利略卫星的发现者随着伽利略·伽利莱对望远镜进行改进,其望远镜的已能够放大20倍,并让伽利略能够更清楚,更仔细地观察各个天体。在1609年12月和1610年1月期间,伽利略在观察木星时,发现了这些伽利略卫星。于1610年1月7日,伽利略在一封信件中第一次提及关于木星的卫星。在当时,他只看到了三个伽利略卫星,并以为它们是固定在木星附近的恒星。于1610年1月8日至3月2日,他继续观察这些伽利略卫星,并发现了第四颗伽利略卫星,及发现了这些天体并非固定的恒星,而是围绕着木星公转的卫星。伽利略的发现证明了望远镜的重要性,并让望远镜成为天文学家发现亮度不足的各种天体的工具。更重要的是,伽利略证明了并不是只有地球才有卫星,其他行星也可以有卫星,无疑是对当时流行的地心说造成一个重大的打击。之后,伽利略也接受了哥白尼日心说。由于这些发现,伽利略能够透过测量卫星的公转去计算其经度。伽...
· 伽利略读书故事
伽利略好奇善问伽利略是意大利伟大的物理学家、天文学家,他在力学上的贡献是建立了落体定律,发现了物体的惯性定律、摆振动的等时性、抛物运动规律,确定了伽利略原理。他在比萨大学读书期间,就非常好奇,也经常提出一些问题,比如“行星为什么不沿着直线前进?”一类的问题,有的老师嫌他问题太多了,可他从不在乎,该问还问。有一次,伽利略得知数学家利奇来比萨游历,他就准备了许多问题去请教利奇。这一次可好了,老师诲人不倦,学生就没完没了地问。伽利略很快就学会了关于平面几何、立体几何等方面的知识,并且深人地掌握阿基米德的关于杠杆、浮体比重等……

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信