几何学
简史
几何 一词源于《几何原本》的翻译。《几何原本》是世界数学史上影响最为久远,最大的一部数学教科书。《几何原本》传入中国,首先应归功于明末科学家徐光启。徐光启和利玛窦《几何原本》中译本的一个伟大贡献是确定了研究图形的这一学科中文名称为“几何”,并确定了几何学中一些基本术语的译名。“几何”的原文是“geometria”(英文geometry),徐光启和利玛窦在翻译时,取“geo”的音为“几何”(明朝音:gi-ho),而“几何”二字中文原意又有“衡量大小”的意思。用“几何”译“geometria”(英文geometry),音义兼顾,确是神来之笔。几何学中最基本的一些术语,如点、线、直线、平行线、角、三角形和四边形等中文译名,都是这个译本定下来的。这些译名一直流传到今天,且东渡到汉字文化圈的日本、朝鲜等国(越南语则使用独自翻译的越制汉语“ 形學 ( hình học )”一词),影响深远。
几何学开始的最早记录可以追踪到公元前2世纪的古代埃及和美索不达米亚。 早期的几何学是有关长度、角度、面积和体积的经验性定律的收集,这些都是因为实际需要(比如勘探、建筑、天文和一些手工业)而发展的。最早的已知有关几何学的文本是埃及的莱因德纸草书 (公元前2000-1800年)和 莫斯科数学纸草书 ( 英语 : Moscow Mathematical Papyrus ) (Moscow Mathematical Papyrus) (约公元前1890年),以及古巴比伦的泥石板(比如“普林顿 322”(公元前1900年))。比如,莫斯科纸草书上给出了如何计算棱台体积的公式。 埃及南部的古代努比亚人曾经建立了一套几何学系统,包括有太阳钟的早期版本。
几何学有悠久的历史。最古老的欧氏几何基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。可以说,《几何原本》是公理化系统的第一个范例,对西方数学思想的发展影响深远。
一千年后,笛卡儿在《方法论》的附录《几何》中,将坐标引入几何,带来革命性进步。从此几何问题能以解析式的形式来表达。
欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。最终,由罗巴切夫斯基和黎曼建立起两种非欧几何 。
几何学的现代化则归功于克莱因、希尔伯特等人。克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。而希尔比特为几何奠定了真正的科学的公理化基础。应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。它对数理逻辑学家的启发也是相当深刻的。
古代几何学
几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。
名称的来历
几何这个词最早来自于希腊语“ γεωμετρία ”,由“ γέα ( 希臘語 : γέα ) ”(土地)和“ μετρεĭν ( 希臘語 : μετρεĭν ) ”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。用“几何”的音来表达,关于数与量的,用“几何”的义来表达。换句话说,徐光启心目中的“几何”,可能就是今天我们所谓的“数学”。所以他为译本所取的名字,以今日用语再翻译一次,就是:《基础数学》。所以如果了解《几何原本》为《基础数学》,它当然会包含像辗转相除法这样的课题。希腊语GEO+METRY按照字源意思是“地理测算”的意思,所以依照字面意思对照现代分类相当于测算学,分平面测算学与立体测算学。
1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——“ 形学 ”,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一词的使用出现。
分类
实务几何学
毕氏定理(3, 4, 5)三角形的图像化证明,记载在公元前500-200年的《周髀算经》中
几何学起源于一些实务上有关量测、面积及体积的科学。在许多方面都已找到相当的公式,例如毕氏定理、圆的周长及面积、三角形的面积、圆柱、球及四角锥的体积等。泰勒斯发展了以几何物件的相似为基础,计算一些无法直接量测的高度或距离的方法。天文学的发展也带来三角学及球面三角学的诞生,也有一些对应的计算技巧。
公理化几何学
欧几里德平行公设的说明
欧几里德在所著的《几何原本》中作了更抽象化的处理。欧几里德引入了一些公理来说明点、线和面一些基本的或是可自证的性质。接着再用数学的思考再去推导其他的性质。几何原本中的推导以其严谨性著称,称为公理化几何。在十九世纪初时,尼古拉·罗巴切夫斯基(1792–1856)、鲍耶·亚诺什(1802–1860)及卡尔·弗里德里希·高斯(1777–1855)发展了非欧几何,其他数学家开始再度对此一领域有兴趣。二十世纪的大卫·希尔伯特试图用公理化的理解为几何学提供现代的基础。
几何建构
古典的几何学家花了许多心力要绘制定理中绘述的几何物件。传统上,可以使用的工具是圆规及没有刻度的直尺,需要在有限次数的绘制内完成图形。有些图形很难(甚至无法)单纯用尺规作图求得,需要配合抛物线、其他曲线或是机械工具才能完成。
几何中的数
毕达格拉斯发现三角形的三边可能会有不可通约性
古希腊的毕达格拉斯就已考虑过数字在几何中的角色。不过因为不可通约长度的出现,不符合他的哲学观点,因此他们放弃抽象的几何量,改用实际上的几何量,例如图案的长及面积。后来勒内·笛卡儿利用坐标系再让数字和几何连结,笛卡儿也发现根据一图示的代数表现可以知道此形状,后来笛卡儿用的坐标系就称为笛卡儿坐标系。
当代的几何学
欧几里德几何
4 21 多胞形 ( 英语 : 4 21 polytope ) 在 E 8 ( 英语 : E8 (mathematics) ) 李群 考克斯特元素 ( 英语 : Coxeter plane ) 下的正交投影
欧几里德几何和计算几何、计算机图形、 凸几何 ( 英语 : convex geometry ) 、关联几何、有限几何学、 离散几何学 ( 英语 : discrete geometry ) ,以及组合数学中的部分领域都有密切关系。欧几里德几何和欧几里德群在晶体学上的进展和哈罗德·斯科特·麦克唐纳·考克斯特的研究已受到注意,可以在考克斯特群及多胞形的理论中看到。 几何群论 ( 英语 : Geometric group theory ) 是将几何学延伸到离散群中,有关其几何结构及代数技术的研究。
微分几何
微分几何因着爱因斯坦的广义相对论假设有曲率的宇宙,因此逐渐受到数学物理的重视。现代的微分几何是本质性的,将空间视为是微分流形,其几何结构则由黎曼流形处理,包括如何量测二点之间的距离等。不再只是欧几里德几何中先验的一部分。
拓扑学和几何学
较粗的三叶结
拓扑学是 转换几何 ( 英语 : transformation geometry ) 中的一部分,专注在同胚的转换,拓扑学在二十世纪有显著的进展,简单来说,拓扑学可以说是“橡皮下的几何学”。当代的几何拓扑学、微分拓扑,以及像莫尔斯理论等子领域,被大部分数学家视为是几何学的一部分。代数拓扑和点集拓扑学则被视为是另一个新的领域。
解析几何
五维卡拉比-丘流形
解析几何是欧几里德几何的现代版本,从1950年代末到1970年代中有大幅的进展,主要是因为让-皮埃尔·塞尔及亚历山大·格罗森迪克的贡献,这也产生了概形以及代数拓扑学一些方法的重视,包括许多的 上同调理论 ( 英语 : cohomology theory ) 。千禧年大奖难题中的霍奇猜想就是解析几何学的问题。
低维度代数簇、代数曲线及 代数曲面 ( 英语 : algebraic surface ) 的研究以及三维代数簇(algebraic threefolds)的研究都有很多进展。 Gröbner基 ( 英语 : en:Gröbner basis ) 理论及 实代数几何 ( 英语 : real algebraic geometry ) 应用在现在解析几何的一些子领域中。算术几何(Arithmetic geometry)是结合了解析几何及数论的一个新的领域。另外一个研究方向是模空间及 复几何 ( 英语 : Complex geometry ) 。代数几何的方法广泛的用在弦理论及膜宇宙理论中。
分支学科
平面几何
立体几何
非欧几何
解析几何
射影几何
仿射几何
代数几何
微分几何
计算几何
拓扑学
分形几何,又称碎形几何
相关条目
画法几何
平面国,埃德温·A·艾勃特的小说,有提到二维空间及三维空间
动态几何软件
三角学
几何学家列表
数学著作列表
其他领域
分子结构
参考文献
《世界数学史简编》,梁宗巨,1981年,辽宁人民出版社,第90页~第92页
卡尔·本杰明·波耶 ( 英语 : Carl Benjamin Boyer ) (Carl Benjamin Boyer) A History of Mathematics , 2nd ed. rev. by Uta C. Merzbach. New York: Wiley, 1989 ISBN 978-0-471-09763-1 (1991 pbk ed. ISBN 978-0-471-54397-8).
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
相关资料
- 有价值
- 一般般
- 没价值