W及Z玻色子
基本性质
W玻色子有两种,分别有 +1(W )和−1(W )单位电荷。W 是W 的反粒子。而Z玻色子(Z )则为电中性的,且为自身的反粒子。这三种粒子皆十分短命,其半衰期约为 3 × × --> 10 − − --> 25 {\displaystyle 3\times 10^{-25}} 秒。
这些玻色子在各种基本粒子之中属重型的一类。W的质量为80.399 ± 0.023 GeV,而Z则为91.1876 ± 0.0021 GeV。它们差不多是质子质量的一百倍——比铁原子还要重。玻色子的质量是十分重要的,因其限制了弱核力的相用范围。相对地,电磁力的相用范围无限远因为光子无质量。
弱相互作用
费曼图β -衰变的一个中子变成质子,以及通过一个瞬间的重W玻色子衰变成的电子和反电中微子
W和Z玻色子是传递弱相互作用的媒介粒子,就像光子是传递电磁相互作用的媒介粒子一样。W玻色子在核衰变过程中担任一个重要的角色。以钴-60的β衰变为例,
此过程在超新星和中子弹爆发时是非常重要的。可是它并不需牵涉到整个钴核子,而只是它33个中子其中之一。那个中子在衰变期间转变成一个质子、电子(又叫β粒子)和反电中微子:
但中子和质子都只是夸克的组合(中子是“上下下”,质子是“上上下”)。中子的一粒下夸克在β衰变中受弱相互作用的影响而变成上夸克:
故弱相互作用可改变夸克的“味道”(参阅费米子)。而所发出的W 粒子迅速衰变成电子和反电中微子:
因Z玻色子是自己的反粒子,故它的所有量子数皆为零。交换Z玻色子是一个中性流作用(Neutral current interaction),而接收和发出玻色子的粒子除动量外什么也没变。要观测中性流作用需要在粒子加速器和侦察器上作很大的投资,故目前世上只有几所高能物理实验室拥有这些仪器。
W和Z玻色子的预测
费曼图
于1950年代量子电动力学的空前成功后,科学家希望为弱核力建立相似的理论。于1968年,这个论调在统一电磁力和弱核力后达到高潮。提出弱电统一的谢尔登·格拉肖、史蒂文·温伯格和阿卜杜勒·萨拉姆因此得到1979年的诺贝尔物理学奖 。他们的弱电理论不止假设了W玻色子的存在来解释β衰变,还预测有一种未被发现的Z玻色子。
W和Z玻色子有质量,而光子却没有——这是弱电理论发展的一大障碍。这些粒子现时以一个SU(2)规范理论来精确描述,但理论中玻色子必定无质量。譬如,光子无质量是因为电磁力能以一个U(1)规范理论解释。某些机制必须破坏SU(2)的对称来给予W和Z玻色子的质量。其中一个解释是由彼得·希格斯于1960年代晚期提出的希格斯机制。它预言了一种新粒子——希格斯玻色子(现今此粒子已被证实存在了)。
SU(2)测量仪理论、电磁力和希格斯机制三者的组合称为格拉肖-温伯格-萨拉姆模型。它是目前广泛接受为标准模型的一大支柱。
W和Z玻色子的发现
W和Z粒子的发现是欧洲核子研究组织的主要成就之一。首先,于1973年,实验观察到了弱电理论预测的中性流作用;那时加尔加梅勒的气泡室拍摄到有一些电子突然自行移动的轨迹。这些观测结果被诠释为中微子借由交换没有轨迹的Z玻色子与电子互相作用。由于中微子是侦测不到的,因此实验中只能看到电子因着交互作用而造成的动量改变。
W和Z粒子要到能量够高的粒子加速器建立后才正式被发现。第一部这样的加速器是超级质子同步加速器,其中卡洛·鲁比亚和西蒙·范德梅尔在1983年一月进行的一连串实验给出了明显的W粒子证据。这些实验称作“UA1”(由鲁比亚主导)和“UA2”,且为众多人合作的努力成果。范德梅尔是加速器方面的驱策者(随机冷却)。UA1和UA2在几个月后(1983年五月)找到Z粒子。很快地鲁比亚和范德梅尔因而得到1984年的诺贝尔物理学奖 ,这可算是保守的诺贝尔奖基金会自成立以来相当不寻常迅速的一次。
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值