族谱网 头条 人物百科

波动方程

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:1117
转发:0
评论:0
简介波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x和时间t的标量函数u(代表各点偏离平衡位置的距离)满足:这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为Slinky)上,波速可以慢到1米/秒。其他形式的波动方程还能在量子力学和广义相对论理论中用到。标量形式的一维波动方程波动方程的推导一维波动方程可用如下的方式推导:一列质量为m的小质点,相邻质点间用长度h的弹簧连接。弹簧的弹性系数(又称“倔强系数”)为k:其中u(x)表示位于x的质点偏离平衡位置的距离。施加在位于x+h处的质点m上的力为:其中FNewton{\displaystyleF_{Newton}}代表根据牛顿第二定律计算的质点惯性力,FHooke{\dis...

简介

波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x和时间t的标量函数u(代表各点偏离平衡位置的距离)满足:

这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为Slinky)上,波速可以慢到1米/秒。

其他形式的波动方程还能在量子力学和广义相对论理论中用到。

标量形式的一维波动方程

波动方程的推导

一维波动方程可用如下的方式推导:一列质量为m的小质点,相邻质点间用长度h的弹簧连接。弹簧的弹性系数(又称“倔强系数”)为k:

其中u(x)表示位于x的质点偏离平衡位置的距离。施加在位于x+h处的质点m上的力为:

其中FNewton{\displaystyle F_{Newton}}代表根据牛顿第二定律计算的质点惯性力,FHooke{\displaystyle F_{Hooke}}代表根据胡克定律计算的弹簧作用力。所以根据分析力学中的达朗贝尔原理,位于x+h处质点的运动方程为:

式中已注明u(x)是时间t的显函数。

若N个质点间隔均匀地固定在长度L = N h的弹簧链上,总质量M = N m,链的总体劲度系数为K = k/N,我们可以将上面的方程写为:

取极限 N→ → -->∞ ∞ -->{\displaystyle \rightarrow \infty }, h→ → -->0{\displaystyle \rightarrow 0}就得到这个系统的波动方程:

在这个例子中,波速c=KL2M{\displaystyle c={\sqrt {\frac {KL^{2}}{M}}}}。

一般解

代数方法

一维标量形式波动方程的一般解是由达朗贝尔给出的。原方程可以写成如下的算子作用形式:

从上面的形式可以看出,若F和G为任意函数,那么它们以下形式的组合

必然满足原方程。上面两项分别对应两列行波("行"与"行动"中同音)——F表示经过该点(x点)的右行波,G表示经过该点的左行波。为完全确定F和G的最终形式还需考虑如下初始条件:

经带入运算,就得到了波动方程著名的达朗贝尔行波解,又称达朗贝尔公式:

在经典的意义下,如果f(x)∈ ∈ -->Ck{\displaystyle f(x)\in C^{k}}并且g(x)∈ ∈ -->Ck− − -->1{\displaystyle g(x)\in C^{k-1}}则u(t,x)∈ ∈ -->Ck{\displaystyle u(t,x)\in C^{k}}。但是,行波函数F和G也可以是广义函数,比如狄拉克δ函数。在这种情况下,行波解应被视作左行或右行的一个脉冲。

基本波动方程是一个线性微分方程,也就是说同时受到两列波作用的点的振幅就是两列波振幅的相加。这意味着可以通过把一列波分解成它的许求解中很有效。此外,可以通过将波分离出各个分量来分析,例如傅里叶变换可以把波分解成正弦分量。

标量形式的三维波动方程

波动方程

瑞士数学家和物理学家莱昂哈德·欧拉(b. 1707)发现了三维空间中的波动方程。

三维波动方程初值问题的解可以通过求解球面波波动方程得到。求解结果可用于推导二维情况的解。

球面波

球面波方程的形式不随空间坐标系统的转动而变化,所以可以将它写成仅与距源点距离r相关的函数。方程的三维形式为:

将方程变形为:

此时,因变量ru满足一维波动方程,于是可以利用达朗贝尔行波法将解写成:

其中F和G为任意函数,可以理解为以速度c从中心向外传播的波和从外面向中心传播的波。这类从点源传出的波强度随距点源距离r衰减,并且属于无后效波,可以清晰地搭载信号。这种波仅在奇数维空间中存在(原因将在下一小节中详细解释)。幸运的是,我们生活的空间是三维的,所以我们可以清晰地通过声波和电磁波(都属于球面波)来互相交流。

时间箭头的讨论

上面方程的解里面,分成了两部分,一部分表示向外传播的波,一部分则是向内。很明显,只要将t换成-t,就可以在这两部分之间转换。这体现了原始方程对于时间是对称的,任意的一个解在时间轴上倒过来看仍然是一个解。

然而,我们所观察到的实际的波,都是属于向外传播的。除非精心地加以调整,我们无法在自然界观察到向内的波,尽管它们也是波动方程的合法的解。

关于这个现象,引起了不少讨论。有人认为,实际上它们即使存在,也无法加以观察。想想如果四周的光向一个物体集中,则因为没有光到达我们的眼睛,我们不可能看见这个物体或者发现这个现象(见参考文献[2])。

广义初值问题的解

波动方程中u是线性函数,并且不随时间和空间坐标的平移而改变。所以我们可以通过平移与叠加球面波获得方程各种类型的解。令φ(ξ,η,ζ)为任意具有三个自变量的函数,球面波形F为狄拉克δ函数(数学语言是:F是一个在全空间积分等于1且非零区间收缩至原点的连续函数的弱极限)。设(ξ,η,ζ)位一族球面波的源点,r为距源点的径向距离,即:

可定义

称为三维波动方程的影响函数,其意义为(ξ,η,ζ)点在t=0时刻受到短促脉冲δ函数作用后向空间中传出的波的影响,系数分母4πc是为方便后续处理而加上的。

若u是这一族波函数的加权叠加,且权函数为φ,则

从δ函数的定义可知,u还能写成

式中α、β和γ是单位球面S上点的坐标,dω为S上的面积微元。该结果的意义为:u(t,x,y,z)是以(x,y,z)为圆心,ct为半径的球面上φ的平均值的t倍:

从上式易得

平均值是关于t的偶函数,所以若

那么

以上得出的便是波动方程初值问题的解。从中可以看出,任意点P在t时刻受到的波扰动只来自以P为圆心,ct为半径的球面上,而这个球的内部点在这一时刻对P点的状态完全没有影响(因为它们的影响之前就已经传过P点了)。换一个角度分析,假设三维空间中任意点P" 在t=0时刻受到一个脉冲扰动δ,那么由此发出的球面波在传过空间中的任意其它点Q后,便再也不会对Q的运动状态产生影响,这就是在物理学中也非常著名的惠更斯原理(Huygens" principle),也称为无后效现象,表示传过的球面波不会留下任何后续效应。

下面我们便可以解释上一小节中留下的问题了。事实上,前面所得到的球面波解仅在奇数维空间中存在。偶数维空间中波动方程的解是弥散的,也就是说波阵面掠过区域仍然会受其影响。以下面的二维波动方程(极坐标形式,注意和上一小节三维形式的差别)为例:

可以从三维形式的解通过降维法得到二维波动方程的影响函数:

其中

设点M(x,y)到点(ξ,η)距离为d,那么从影响函数中可以看出,当t >d /c即初始扰动已传过M点后,M仍在受到它的影响。二维球面波(柱面波)的这一性质决定了它不能作为传递信号的工具,因为这种波(事实上包括所有偶数维空间中的球面波)经过的点受到的是交织在一起的各个不同时刻的扰动。

标量形式的二维波动方程

二维波动方程的直角坐标形式为:

如前所述,我们可以从三维波动方程的解中将u视为与其中一个自变量无关(降维法)来得到二维形式的解。将初始条件改写为

则三维形式的解就变成

其中α和β是单位球面上点的头两个坐标分量,dω是球面上的面积微元。此积分可变换为在(x,y)为中心,ct为半径的圆域D上的积分:

从这个结果也能得到上一小节最后的结论。

二维波动方程解的一个例子是紧绷的鼓面的运动。

边值问题

一维情形

一根自身绷紧,两端分别固定于x=0和x=L的弹性弦在t>0时刻,0 < x < L上运动满足波动方程。在边界点处,可以要求u满足各种边界条件。通常遇到的边界条件都可归纳成下列形式:

其中a、b非负。若要弦的两端固定不动,对应上面式子中a、b趋于无穷大。求解偏微分方程的分离变量法要求寻找以下形式的解:

将上述假设形式代入原方程中可以得到:

为使边值问题有非平凡解,本征值λ须满足

这是固有值问题的斯图姆-刘维尔理论的一个特例。若a、b为正数,则对应的所有本征值均为正数,方程的解为三角函数。使u和ut满足平方可积条件的解可以通过适当选取u和ut三角级数展开来求得。

多维情形

一维初始值-边值理论可以拓展至任意维空间中。考虑m维空间(坐标简写为x)中的域D,B为D的边界。当0<t时,位于D内的点x满足波动方程。在D的边界上,解u须满足

其中n是B上指向域外的法向矢量,a是定义在B上的非负函数。要求u在B上始终为0的边界条件相当于令a趋于无穷。初始条件为

其中f和g是定义在D内的函数。这个问题可以通过将f和g展开成域D内拉普拉斯算子满足边界条件的本征函数系的叠加来求解(这是分离变量法的一般步骤)。也就是求解在域D内满足

在边界B上满足

的本征函数系v。

在二维情形下,上述本征函数系可以理解成绷紧地张在边界B上的鼓面的自由振动模态。若B是一个圆,则这些本征函数是关于极角自变量θ的三角函数与关于极轴自变量r的整阶贝塞尔函数的乘积。更详细的说明参见英文版条目亥姆霍兹方程。

在三维形式下,若边界是空间中的球面,那么本征函数是关于球坐标下两个极角自变量的球面调和函数,乘以关于径向自变量ρ的半奇数阶贝塞尔函数。

进一步推广

在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。此时,c应该用波的相速度代替:

实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程:

另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。这种情况下,标量u的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。

三维波动方程描述了波在均匀各向同性弹性体中的传播。绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。在只考虑线时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波:

式中:

λ λ -->{\displaystyle \lambda }和μ μ -->{\displaystyle \mu }被拉梅弹性体的拉梅常数(也叫“拉梅模量”,英文Lamé constants或Lamé moduli),是描述各向同性固体弹性性质的参数;

ρ ρ -->{\displaystyle \rho }表示密度;

f{\displaystyle {\mathbf {f}}}是源函数(即外界施加的激振力);

u{\displaystyle {\mathbf {u}}}表示位移;

注意在上述方程中,激振力和位移都是矢量,所以该方程也被称为矢量形式的波动方程。

参考文献

严镇军编,《数学物理方程》,第二版,中国科学技术大学出版社,合肥,2002,第210页~第224页,ISBN 7-312-00799-6/O·177

[英]胡·普赖斯著,肖巍译,《时间之矢与阿基米德之点—物理学时间的新方向》,上海科学技术出版社,上海,2001,ISBN 7-5323-5737-6

M. F. Atiyah, R. Bott, L. Garding, Lacunas for hyperbolic differential operators with constant coefficients I, Acta Math., 124 (1970), 109–189.

M.F. Atiyah, R. Bott, and L. Garding, Lacunas for hyperbolic differential operators with constant coefficients II, Acta Math., 131 (1973), 145–206.

R. Courant, D. Hilbert, Methods of Mathematical Physics, vol II. Interscience (Wiley) New York, 1962.

参看

声波方程

光波方程

电磁波方程

马达变量

多普勒效应

电磁学

光学

位相

薛定谔方程

彼得罗夫斯基空白


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

相关资料

展开
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 波动角度
一般参数入射角,常用符号i{\displaystylei}或θθ-->i{\displaystyle\theta_{i}},为波在一个介质或折射率转换面上,其行进方法线与法线之间的角度。反射角,常用符号r{\displaystyler}或θθ-->r{\displaystyle\theta_{r}},反射在反射表面上,其离开方向线与法线之间的角度。数值与入射角相同。折射角,常用符号r{\displaystyler}或θθ-->r{\displaystyle\theta_{r}},为波在折射表面上,其再行进方向线与法线之间的角度。数值依入折射及折射率转变。衍射角或衍射角,常用符号d{\displaystyled}或θθ-->m{\displaystyle\theta_{m}},为波进行衍射时,其再行进方向线与法线之间的角度。通常只有光之类的线形波长才会有,且为多重角度...
· 波动力学
德布罗意与相位波1923年,德布罗意参考爱因斯坦的狭义相对论发现,如果有:其中h{\displaystyleh\,}是普朗克常数、fo{\displaystylef_{o}\,}是粒子的内部运动的频率、m{\displaystylem\,}是粒子的静止质量、而c{\displaystylec\,}是光速;那么根据狭义相对论的质量及时间随运动的变化,我们可得到以下两个关系:所以f1≠≠-->f2{\displaystylef_{1}\neqf_{2}\,}。但以上两个频率的差别正是德布罗意的出发点。他立刻引入一个频率为f{\displaystylef\,}、相速度为u{\displaystyleu\,}的假想波,并证明如果此波与和运动粒子内部的振动sin⁡⁡-->2ππ-->f2t{\displaystyle\sin{2\pif_{2}t}\,}同相,“这种相的和谐将保持下...
· 方程
“方程”一词的来历方程一词出现在中国早期的数学专著《九章算术》中,其“卷第八”即名“方程”。卷第八(一)为:翻成白话即为:现在这里有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。问1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?其“方程术”用阿拉伯数字表示即为:123232311263439{\displaystyle{\begin{array}{*{20}c}1&2&3\\2&3&2\\3&1&1\\{26}&{34}&{39}\\\end{array}}}《九章算术》采用直除法即以一行首项系数乘另一行再对减消元来解方程。若设可打出黍的斗数分别为1捆上等黍x{\displaystylex\,}斗、1捆中等黍y{\displaystyley\,}斗、1捆下等黍z...
· 火箭方程
公式齐奥尔科夫斯基火箭方程的核心内容是:基于动量守恒原理,任何一个装置,通过一个消耗自身质量的反方向推进系统,可以在原有运行速度上,产生并获得加速度。其认为,任何一次飞行器轨道变化(速度变化)或者多次轨道变化都遵循如下公式:ΔΔ-->v=veln⁡⁡-->m0m1{\displaystyle\Deltav\=v_{e}\ln{\frac{m_{0}}{m_{1}}}}其还可以写成如下方式:m1=m0e−−-->ΔΔ-->v/ve{\displaystylem_{1}=m_{0}e^{-\Deltav\/v_{e}}}或者m0=m1eΔΔ-->v/ve{\displaystylem_{0}=m_{1}e^{\Deltav\/v_{e}}}或者1−−-->m1m0=1−−-->e−−-->ΔΔ-->v/ve{\displaystyle1-{\frac{m_{1}}{m_{0}}}=1-e^{-...
· 方程求解
简介考虑一个具一般性的例子,有一个以下的方程:其中x1,...,xn为未知数,而c为常数。其解为反像集合的成员其中T1×···×Tn为函数ƒ的定义域。注意解集合可能为空集合(没有解)、单元素集合(唯一解)、有限个元素的集合及无限多个元素的集合(有无限多的解)。例如,以下的方程:其未知数为x,y及z,可以在等式二侧同减21z,得到以下的式子:以此例而言,方程不会只有唯一解,方程解的个数有无限多个,可以写为以下的集合其中一个特殊解为x=0,y=0,z=0,而x=3,y=6,z=1和x=8,y=9,z=2也是其解。解集合描述一个三维空间中,恰好穿过上述三个点的平面。解集合若解集合(英语:solutionset)为空集合,表示不存在xi使得以下方程成立其中c为一特定常数。例如考虑一个经典的单变数例子,考虑定义域为整数的平方函数ƒ:考...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信