族谱网 头条 人物百科

雅可比旋转

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:467
转发:0
评论:0
数值稳定计算要确定需要更改的数量,我们必须解远离对角的元素为零的方程(Golub&VanLoan1996,§8.4)。这蕴涵了设β是这个数量的一半,如果akℓ是零,我们可以停止而不需

数值稳定计算

要确定需要更改的数量,我们必须解远离对角的元素为零的方程(Golub & Van Loan 1996,§8.4)。这蕴涵了

设 β 是这个数量的一半,

如果 akℓ 是零,我们可以停止而不需要进行更改,因此我们永不除以零。设 t 是 tan ϑ。则通过一些三角恒等式我们简约这个方程为

为了稳定性我们选择解

以此我们可以获得 c 和 s 为

尽管我们可以使用前面给出的代数更改等式,重写它们会更好。设

所以 ρ = tan(ϑ/2)。则修订后的修改方程为

如前面提及的,我们永不需要明确的计算旋转角度 ϑ。事实上,我们可以通过只保留三个值 k, ℓ 和 t 来重新生成由 Qkℓ 确定的对称更改,带有 t 对零旋转设置为零。

参见

Givens旋转

引用

Golub, Gene H. & Charles F. Van Loan (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins University Press, ISBN978-0-8018-5414-9


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 卡尔·雅可比
生平雅可比生于一个阿什肯纳兹犹太家庭父亲西蒙·雅可比是银行家。卡尔是四个子女中的第二子,其长兄莫里兹·冯·雅可比之后同样因成为工程师和物理学家而出名。最初,雅可比在家接受其叔叔的家庭教育,学习了简单的数学和语言。在1816年,12岁的雅可比进入波茨坦文理中学(预科学校)学习经典语言,德语,以及数学。缘于叔叔对他的良好基础教育,以及自身的杰出能力,在不到半年的时间内雅可比就跳级到了高年级,尽管年龄还未达到标准。然而,因为大学并不招收16岁以下的学生,因此,雅可比直到1821年才能从学校毕业。在这段时间里,雅可比显示出了对很多专业的兴趣,包括拉丁语,希腊语,哲学,历史,以及数学。在这段时间中,雅可比第一次尝试寻找五次方程的根式。1821年,雅可比进入柏林大学就读,并于1825年于柏林大学获博士学位。一开始,他将自己的精力同时放到哲学和数学两个领域。在哲学上,他参加了伯克(AugustBoeck...
· 雅可比符号
定义勒让德符号(ap){\displaystyle({\tfrac{a}{p}})}是对于所有的正整数a{\displaystylea}和所有的素数p{\displaystylep}定义的。当(ap)=1{\displaystyle({\frac{a}{p}})=1}时,称a{\displaystylea}是模p{\displaystylep}的二次剩余;当(ap)=−−-->1{\displaystyle({\frac{a}{p}})=-1}时,称a{\displaystylea}是模p{\displaystylep}的二次非剩余。运用勒让德符号计算时要将a{\displaystylea}分解成标准形式,计算上十分麻烦,因此产生了雅可比符号:设m{\displaystylem}是一个正奇数,其质因数分解式为m=∏∏-->i=pi{\displaystylem=\prod_{i...
· 雅可比猜想
雅可比行列式令n>1为固定的整数,考虑多项式F1,...,Fn,变量为X=(X1,...,Xn),系数在特征为零的代数闭域k中。(可假设k为复数域C{\displaystyle\mathbb{C}}。)也就是说F1,……-->,Fn∈∈-->k[X]{\displaystyleF_{1},\ldots,F_{n}\ink[X]}。定义函数F:k→k为函数F的雅可比行列式JF是由F的偏导数组成的n×n矩阵的行列式JF也是变量为X的多项式函数。叙述多变量微积分的反函数定理指出如在某一点有JF≠0,那么在该点附近F有反函数。由于k是代数闭域,JF是多项式,因此JF必定在某些点上为0,除非JF是非零的常数函数。以下是一项基本结果:而其反命题则为雅可比猜想:令k{\displaystylek}为一特征为零的代数闭域。若F=(F1,……-->,Fn)∈∈-->...
· 雅可比矩阵
雅可比矩阵假设某函数从Rn{\displaystyle\mathbb{R}^{n}}映到Rm{\displaystyle\mathbb{R}^{m}},其雅可比矩阵是从Rn{\displaystyle\mathbb{R}^{n}}到Rm{\displaystyle\mathbb{R}^{m}}的线性映射,其重要意义在于它表现了一个多变数向量函数的最佳线性逼近。因此,雅可比矩阵类似于单变数函数的导数。假设F:Rn→Rm是一个从n维欧氏空间映射到到m维欧氏空间的函数。这个函数由m个实函数组成:y1(x1,...,xn),...,ym(x1,...,xn)。这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵(mbyn),这就是所谓的雅可比矩阵:此矩阵用符号表示为:这个矩阵的第i行是由梯度函数的转置yi(i=1,...,m)表示的如果p是Rn{\displaystyle\mathbb{R}^{...
· 雅可比恒等式
定义集合S{\displaystyleS}有一个二元运算子∗∗-->{\displaystyle*}及可交换二元运算子+{\displaystyle+雅可比雅可比恒等式,如果李代数是满足雅可比恒等式的代数结构的一个主要例子。注意,满足雅可比恒等式的代数结构不一定满足反交换律。

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信