更多文章






定义
勒让德符号(ap){\displaystyle ({\tfrac {a}{p}})}是对于所有的正整数a{\displaystyle a} 和所有的素数p{\displaystyle p} 定义的。
当(ap)=1{\displaystyle ({\frac {a}{p}})=1} 时,称a{\displaystyle a} 是模p{\displaystyle p}的二次剩余;当(ap)=− − -->1{\displaystyle ({\frac {a}{p}})=-1} 时,称a{\displaystyle a} 是模p{\displaystyle p}的二次非剩余。
运用勒让德符号计算时要将 a{\displaystyle a} 分解成标准形式,计算上十分麻烦,因此产生了雅可比符号:
设 m{\displaystyle m} 是一个正奇数,其质因数分解式为 m=∏ ∏ -->i=pi{\displaystyle m=\prod _{i=1}^{s}p_{i}},并且正整数 a{\displaystyle a} 满足 (m,a)=1{\displaystyle (m,a)=1} 那么定义(am)=∏ ∏ -->i=(api){\displaystyle ({\frac {a}{m}})=\prod _{i=1}^{s}({\frac {a}{p_{i}}})}。
参见
克罗内克符号,将雅可比符号推广到任意自然数上。
参考来源
Bach, Eric; Shallit, Jeffrey, Algorithmic Number Theory (Vol I: Efficient Algorithms), Cambridge: The MIT Press, 1966, ISBN 0-262-02045-5
Lemmermeyer, Franz, Reciprocity Laws: from Euler to Eisenstein, Berlin:Springer, 2000, ISBN 3-540-66967-4
Ireland, Kenneth; Rosen, Michael, A Classical Introduction to Modern Number Theory (Second edition), New York:Springer, 1990, ISBN 0-387-97329-X
Gauss, Carl Friedrich; Maser, H. (translator into German), Untersuchungen uber hohere Arithmetik (Disquisitiones Arithemeticae & other papers on number theory) (Second edition), New York: Chelsea, 1965, ISBN 0-8284-0191-8
Gauss, Carl Friedrich; Clarke, Arthur A. (translator into English), Disquisitiones Arithemeticae (Second, corrected edition), New York:Springer, 1986, ISBN 0387962549
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。