原恒星
碎裂
恒星经常被发现是成群的,而且看似同一个时间形成的,也就是所知道的星团。这可以被解释为当云气收缩时他的密度是不均匀的。事实上,第一个指出这一点的是理查德·拉森,当恒星在巨分子云内形成时,可以全面的观察到在云气内所有尺度上的湍流速度都增加了。这些湍流的速度压缩气体产生震波,通常会在巨分子云尺度和密度的广大范围内引发丝状和团块的结构。这个过程被称为湍流碎裂。一些团块结构超过了金斯质量并且重心变得不稳定,可能会在被分颗成单一或多星的系统。
无论原因为何,云气因碎裂而变得较小,密度较高的区域可能会持续再成为更小的区域,结果是成为原恒团。这与星团是普遍存在的观测现象一致。
来自重力能量的加热
当云气继续收缩时,它的温度会增加。这不是核反应造成的,只是重力能量转换成的热动能。当微粒(原子或分子)因为在收缩的碎片中而减少至质量中心的距离时,就会导致重力能量的减少。但是因为总能量的守恒,因此伴随着重力能量的减少,微粒的动能就必须相对的增加。热动能的增加也会表现在云气温度的增加,云气越收缩温度增加的就越多。
分子间的碰撞经常也可以让它们成为激发状态,然后经由辐射的发射衰变状态。这些辐射都有特定的频率,在这些温度(10到20K)发射的辐射是光谱中的微波或红外线。这些辐射大部分都会由云气中逃逸,因此能防止温度快速的上升。
当云气收缩时,分子的数值密度会增加,这终将使得散发的辐射越来越难以逃逸。实际上,气体对这些辐射会变得不透明,并且云气内的温度将开始更迅速的上升。
云气在红外线变得不透明的事实,也使我们难以直接观测到云气内发生的变化。我们必须使用波长更长的无线电观察还能逃逸出来的辐射。另外,理论和计算机的数值模拟也是了解这个阶段所必须的。
直到周围的物体落入中心的凝块,原恒星的阶段才算开始。而当周围的气体和尘粒都已经消散,吸积的过程也都停止,这颗原恒星才会被考虑是前主序星。
历史
"原恒星"这个字眼是在1889年的出版品上才首度出现的。
注解
^ Astronomical Society of the Pacific (1889)page 388
相关条目
赫比格-哈罗天体
主序前星
原行星盘
原恒星盘
NGC 7538:已经被发现的最大原恒星之家,大小约是太阳系的300倍。
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值