族谱网 头条 人物百科

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:1645
转发:0
评论:0
发现首个证明氦存在的证据是太阳色球的发射光谱中的一条亮黄色谱线。1868年8月18日,法国天文学家皮埃尔·让森在印度的贡土尔观测日全食时,发现了这条波长为587.49nm的谱线。起初人们推测这条谱线来自钠。同年10月20日,英国天文学家约瑟夫·诺曼·洛克耶(英语:NormanLockyer)在太阳光谱中发现了一条黄线。由于这条谱线的波长和夫朗和斐谱线中钠产生的D1线和D2的波长相似,洛克耶将其命名为D3线。他还提出这条谱线来自太阳上的一种尚未在地球上发现的元素。洛克耶和英国化学家爱德华·弗兰克兰(英语:EdwardFrankland)以希腊语中的ἥλιος(helios,意为“太阳”)一词,将这一元素命名为Helium.氦的谱线1882年,意大利物理学家路易吉·帕尔米耶里(英语:LuigiPalmieri)在分析维苏威火山的岩浆时发现了氦的D3线,这是氦在地球上的首次发现记录。地层氦的发现...

发现

首个证明氦存在的证据是太阳色球的发射光谱中的一条亮黄色谱线。1868年8月18日,法国天文学家皮埃尔·让森在印度的贡土尔观测日全食时,发现了这条波长为587.49 nm的谱线。 起初人们推测这条谱线来自钠。同年10月20日,英国天文学家 约瑟夫·诺曼·洛克耶 ( 英语 : Norman Lockyer ) 在太阳光谱中发现了一条黄线。由于这条谱线的波长和夫朗和斐谱线中钠产生的D 1 线和D 2 的波长相似,洛克耶将其命名为D 3 线。 他还提出这条谱线来自太阳上的一种尚未在地球上发现的元素。洛克耶和英国化学家 爱德华·弗兰克兰 ( 英语 : Edward Frankland ) 以希腊语中的ἥλιος( helios ,意为“太阳”)一词,将这一元素命名为Helium.

氦

  氦的谱线

1882年,意大利物理学家 路易吉·帕尔米耶里 ( 英语 : Luigi Palmieri ) 在分析维苏威火山的岩浆时发现了氦的D 3 线,这是氦在地球上的首次发现记录。

氦

  地层氦的发现者威廉·拉姆齐爵士

1895年3月26日,苏格兰化学家威廉·拉姆齐爵士将 钇铀矿 ( 英语 : cleveite ) (一种沥青铀矿,其质量的10%为稀土元素)用酸处理,首次在地球上分离出氦。拉姆齐当时在寻找氩,他用硫酸处理矿物,分离释放出的气体中的氮和氧。在剩下的气体中,他发现了一条和太阳光谱中的D 3 线吻合的黄色谱线。 洛克耶和英国物理学家威廉·克鲁克斯鉴定了这一气体样品,证明了它是氦气。同一年,两位化学家 皮·特奥多尔·克利夫 ( 英语 : Per Teodor Cleve ) 和 尼尔斯·朗勒特 ( 英语 : Abraham Langlet ) 在瑞典乌普萨拉独立从钇铀矿中分离出氦;他们收集的氦足以测定这一元素的原子量。 在拉姆齐分离氦之前,美国地质化学家 威廉·弗朗西斯·希尔布兰德 ( 英语 : William Francis Hillebrand ) 同样注意到一份沥青铀矿样品中的一条不寻常的谱线,并从中分离出氦;但他认为这些谱线来自氮气。他致拉姆齐的贺信是科学史上“发现”和“邻近发现”的一个有趣例子。

1907年,欧内斯特·卢瑟福与 托马斯·罗伊兹 ( 英语 : Thomas Royds ) 让α粒子穿透玻璃壁进入真空管,向管中放电后观察管内气体的发射光谱,证明α粒子就是氦核。1908年,荷兰物理学家海克·卡末林·昂内斯将氦冷却至不到1K的低温,从而首次制得液态氦。 他还试着将氦固化,但是氦没有固、液、气三相平衡的三相点,因此他的尝试没有成功。1926年,昂内斯的学生 威廉·亨德里克·科索姆 ( 英语 : Willem Hendrik Keesom ) 在低温下向氦加压,制得了1 cm 的固态氦。

氦

  处于超流相的液氦,会在杯身内面向上缓慢攀爬,攀越过杯口,然后在杯身外面向下缓慢滑落,集结在一起,形成一滴液氦珠,最后滴落在下面的液氦里。这样,液氦会一滴一滴的滴落,直到杯子完全流空为止。

1938年,苏联物理学家彼得·列昂尼多维奇·卡皮察发现氦-4在接近绝对零度时几乎没有粘度,从而发现了今天所说的超流体。 这一现象和玻色-爱因斯坦凝聚有关。1972年,美国物理学家道格拉斯·奥谢罗夫、戴维·李、以及罗伯特·科尔曼·理查森发现氦-3也有超流体现象,但所需的温度比氦-4低得多。氦-3的超流体现象被认为和氦-3费米子配对形成玻色子有关,这种配对和超导体中电子形成的库珀对类似。

名称由来

在皮埃尔·让森从太阳光谱中发现氦时,英国人洛克耶(J. N. Lockyer)和弗兰克兰(E. F. Frankland)认为这种物质在地球上还没有发现,因此定名为“氦”(法文为 hélium ,英文为 helium ),源自希腊语 ήλιος ,意为“太阳”。

在中文里,晚清时由传教士创办的益智书会译作“氜”(读作“日”),以表示从太阳光中发现的气态元素。在1915年,由民国教育部颁布的《无机化学命名草案》则采用发音与英文更为一 致的“氦”,并沿用至今。  

分布

氦存在于整个宇宙中,按质量计占23%。但在自然界中主要存在于天然气或放射性矿石中。在地球大气层中,氦的浓度十分低,只有5.2万分之一。在地球上的放射性矿物中所含的氦是α衰变的产物。氦在某些天然气中含有在经济上值得提取的量,最高可以含有7%,在美国的天然气中氦大约有1%。在地表的空气中每立方米含有4.6立方厘米的氦,大约占整个体积的0.0005%,密度只有空气的7.2分之一,是除了氢以外密度最小的气体。

性质

氦气是所有气体中最难液化的,沸点仅为4.22K,这源于氦极低的极性。同时,氦是唯一不能在标准大气压下固化的物质,也没有三相点。基于类似的原因,氦在水中的溶解度也极小,20°C时每升水中仅能溶解8.61毫升。

液氦在温度降至2.178K时,性质会发生突变,粘度极小,能形成只有几个原子厚度的薄膜,发生无粘度流动,成为一种超流体,称为氦(II),正常的液氦称作氦(I)。这种氦(II)的表面张力很小,能沿容器壁向上流动,直到两边液面等高。此时的氦热传导性为铜的800倍,成为导热性能极佳的热导体。其比热容、压缩性等都是反常的。液氦的另一重要性质是能穿透许多常见材料,如PVC、橡胶与大部分玻璃,所以玻璃杜瓦瓶无法用于液氦的操作 。

氦的化学性质非常不活泼,一般状态下不会和其他物质发生反应,目前检测到的氦化合物仅痕量发现于质谱中,且不稳定 。

制备

天然气分离法:工业上,主要以含有氦的天然气为原料,反复进行液化分馏,然后利用活性炭进行吸附提纯,得到纯氦。

合成氨法:在合成氨中,从尾气经分离提纯可得氦。

空气分馏法:从液态空气中用分馏法从氖氦混合气中提出。

铀矿石法:将含氦的铀矿石经过焙烧,分离出气体,再经过化学方法,除去水蒸气、氢气和二氧化碳等杂质提纯出氦。

同位素

现时已知的氦同位素有八种,包括氦3、氦4、氦5、氦6、氦8等,但只有氦3和氦4是稳定的,其余的均带有放射性。在自然界中,氦同位素中以氦4占最多,多是从其他放射性物质的α衰变放出α粒子(氦4原子核)而来。氦3的含量在地球上极少,而在月球上储量巨大,它们均是由超重氢(氚)的β衰变所产生。

用途

氦

  充满氦气,形似氦化学符号(He)的充气放电管

由于氦很轻,而且不易燃,因此它可用于填充飞艇、气球、温度计、电子管、浅水夫等。也可用于原子反应堆和加速器、激光器、冶炼和焊接时的保护气体,还可用来填充灯泡和霓虹灯管,也用来制造泡沫塑料。

由于氦在血液中的溶解度很低,因此可以加到氧气中防止减压病,作为潜水员的呼吸用气体,或用于治疗气喘和窒息。

液体氦的温度(-268.93 °C)接近绝对零度(-273℃),因此它在超导研究中用作超流体,制造超导材料。液态氦还常用做冷却剂和制冷剂。在医学中,用于氩氦刀以治疗癌症。

它还可以用作人造大气层和镭射媒体的组成部分。

氦气可以用于保存尸体

其他

对声音的影响

因为氦气传播声音的速度差不多为空气的三倍,这会改变人的声带的共振态,于是使得吸入氦气的人说话的声音的频率变高。这个有趣的现象使得吸入氦气的人说话尖声细气,就好像旧时代的卡通人物一样 ,与吸入六氟化硫后声音变粗正好相反。这种现象经常被错误地解释为音速的提高直接导致声音频率的增加,或者氦气使得声带振动变快。

过度使用所产生的问题

需要注意的是,如果大量吸入氦气,会造成体内氧气被氦取代,因而发生缺氧(呼吸反射是受体内过量二氧化碳驱动,而对缺氧并不敏感),严重的甚至会死亡。2015年1月28日,日本少女偶像团体3B junior的一名成员在参加BS朝日的综艺节目录影时,因玩变声游戏吸入氦气后失去意识陷入昏迷,被送医治疗 。

另外,如果是由高压气瓶中直接吸入氦气,那么其高流速就会严重地破坏肺部组织。大量而高压的氦和氧会造成 高压紧张症候群 ( 英语 : High pressure nervous syndrome ) ,不过少量的氮就能够处理这个问题。

参考文献

 


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

相关资料

展开
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 氦-4
衰变产物氦-4的原子核即为α粒子,是α衰变的产物。许多放射性元素(如铀和钍)都会α衰变,这也是地球上氦-4的主要来源。许多恒星在进行核聚变反应时,也会产生氦-4。超流体氦-4在低于2.17K(−270.98°C)时会变成超流体。
· 液氦
历史1908年7月10日,荷兰物理学家海克·卡末林·昂内斯首次将氦气进行液化;不过当时由于质谱法仍尚未开始发展,使得科学家并没有同时测量出关于液态氦-3的数据。发展至近10年以来,液氦主要被拿来作为低温制冷剂并且投入商业化生产,其中又以常在核磁共振成像、核磁共振、物理学实验使用的超导磁铁最为常见。不过液氦在生产上仍存在有部分难度,目前只能够借由林德-汉普逊循环的方式来将氦气液化。特性数据参见工业气体低温物理学超流体膨胀比液氮液氢液态空气(英语:Liquidair)参考资料
· 氦-3
用途因为使用氦-3的热核反应堆中没有中子(纯氦-3融合热核反应只会产生没有放射性的质子),故使用氦-3作为能源时不会产生辐射,不会为环境带来危害。但是因为地球上的氦-3储量稀少,无法大量用作能源。而根据月球探测的结果,月球上的氦-3含量估计约100万吨以上。参考引用数据:[1]能源安全有关科幻作品月劫余生宇宙世纪科技列表钢铁苍穹月亮的距离机动战士-高达系列LIMIT极限小说
· 3氦过程
反应速率和恒星演化3氦过程与恒星物质的温度和密度有强烈的关联性。反应速率释放出的能量与温度的比例关系是指数的30次方和密度的平方。对照于质子-质子链反应产生能量的比率祇是温度的四次方和与密度成正比。与温度这样强烈的关联性造成恒星在演化的后期进入红巨星的阶段。对低质量的恒星,累积在核心的氦阻挡恒星进一步塌缩的只有电子简并压力,而这种在核心的压力与温度几乎是毫无关联的。如此的结果是,一但一颗较小的恒星开始进行3氦过程,核心在反应中不会扩展也不会冷却,只有不断的增高温度,结果是反应速率持续增加直到发生热失控的反应。这个过程就是所知道的氦闪,虽然只有不到一分钟的时间,但却能够燃烧掉核心60-80%的氦,并且导致巨大的能量释出。对较大质量的恒星,氦燃烧在环绕着简并碳核心的壳层中进行。因为氦壳不是简并的物质,因为氦燃烧能量释放而增加的热压力造成恒星的膨胀,膨胀导致氦层温度的下降而中止了反应,于是恒星再...
· 氦聚变
参考资料AlakK.Ray(2004)Starsasthermonuclearreactors:theirfuelsandashes(arxiv.orgarticle)

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信