族谱网 头条 人物百科

宇称不守恒

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:636
转发:0
评论:0
历史美国物理学家理察·T·考克斯(RichardThrelkeldCox)可能早在1928年就观察到了β衰变中宇称的不守恒性。科学家在1956年之前已发现θ和τ两种介子的自旋,质量,电荷完全相同,一度以为是同一种粒子,然而θ衰变时产生两个π介子,τ衰变时产生3个π介子,奇数个π介子的总宇称是负的,而偶数个π介子的总宇称是正的。如此看来又似乎不是同一种粒子。1956年4月第六届罗彻斯特高能核物理年会在纽约州北部罗彻斯特大学举行,会议上讨论了θ-τ的衰变中,有科学家提出宇称是否有可能不守恒?1956年6月李政道与杨振宁在美国《物理评论》上共同发表《弱相互作用中的宇称守恒质疑》的论文,认为基本粒子弱相互作用内存在“不守恒”,θ和τ是两种完全相同的粒子。1957年1月9日吴健雄与安布勒(E.Ambler)、海沃德(R.W.Hayward)、霍普斯(D.D.Hoppes)等科学家从观测钴60(Co)...

历史

美国物理学家理察·T·考克斯(Richard Threlkeld Cox)可能早在1928年就观察到了β衰变中宇称的不守恒性。科学家在1956年之前已发现θ和τ两种介子的自旋,质量,电荷完全相同,一度以为是同一种粒子,然而θ衰变时产生两个π介子,τ衰变时产生3个π介子,奇数个π介子的总宇称是负的,而偶数个π介子的总宇称是正的。如此看来又似乎不是同一种粒子。1956年4月第六届罗彻斯特高能核物理年会在纽约州北部罗彻斯特大学举行,会议上讨论了θ-τ的衰变中,有科学家提出宇称是否有可能不守恒?1956年6月李政道与杨振宁在美国《物理评论》上共同发表《弱相互作用中的宇称守恒质疑》的论文,认为基本粒子弱相互作用内存在“不守恒”,θ和τ是两种完全相同的粒子。

1957年1月9日吴健雄与安布勒(E.Ambler)、海沃德(R.W.Hayward)、霍普斯(D.D.Hoppes)等科学家从观测钴60(Co)的衰变的实验证实了这项推测,她以两套装置中的钴60互为镜像,一套装置中的钴60原子核自旋方向转向左旋,另一套装置中的钴60原子核自旋方向转向右旋,结果发现在极低温(绝对零度以上0.01K)下放射出来的电子数有很大差异,实验结果推翻了物理学上屹立不移三十年之久的宇称守恒定律(在强相互作用和电磁相互作用中宇称一直是守恒的)。1957年1月15日,美国哥伦比亚大学物理系举行新闻发布会,公布了吴健雄小组的实验结果,并且宣布宇称守恒这个物理学基本定律在弱相互作用中被推翻了。次日,《》发表一篇《外表与真实》的报导。1月17日苏黎世联邦理工学院的泡利写信给韦斯可夫表达了他关于宇称不守恒的怀疑,泡利写道:“我不相信,上帝是个弱的左撇子。我准备拿一大笔钱打赌,实验一定会得出对称的结果。”。1957年10月李政道与杨振宁因宇称不守恒理论而获得诺贝尔物理学奖。杨在他获诺贝尔奖金的致词中:“对称原理之一,即左右对称,是与人类文明一样古老的观念。自然界是否具有这样一种对称性,过去的哲学家们一直争论不休。……然而,物理定律过去却一直显示出左右之间的完全对称性。”

1962年起,李政道与杨振宁都说自己是提出“弱相互作用中宇称不守恒原理”的第一人,并为此长期辩论。1982年杨振宁发表英文文章,宣称当初宇称不守恒是杨振宁一个人提出来的。1986年李政道在用英文文章里指出杨振宁的说法与事实不合。

参阅

吴氏实验:首度验证该原理的实验。

明显对称性破缺

CP破坏:宇称守恒的基本思想是在镜像反演后粒子物理学的公式不变。

CPT对称

中子电偶极矩

注释

^埃米里奥·赛格雷,《从X射线到夸克——近代物理学家和他们的发现》,宇称的瓦解

^Lee, T. D.; Yang, C. N. Question of Parity Conservation in Weak Interactions. Physical Review. 1956, 104(1): 254–258.Bibcode:1956PhRv..104..254L. doi:10.1103/PhysRev.104.254. 


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 宇称
关系式P=(−1)其中ℓ是角量子数。相关条目中微子量子数弱相互作用CP破坏中子电偶极矩宇称守恒宇称不守恒电荷共轭宇称
· 宇文丘不勤
参考资料《魏书》帝纪第一、列传第九十一
· 守恒定律
绝对定律以下列出一些守恒定律。这些定律是“绝对定律”(exactlaw)。物理学者从未找到任何违背这些定律的证据。质能守恒动量守恒角动量守恒电荷守恒色荷守恒弱同位旋(weakisospin)守恒概率密度守恒CPT对称性(综合电荷、宇称和时间共轭)洛伦兹对称性近似定律在某些特别状况,像低速、短暂时间尺寸、某种相互作用等等,以下这些定律近似于正确。质量守恒定律(适用于非相对论性速度与不存在核反应的状况)能量守恒定律(适用于非相对论性速度与不存在核反应的状况)重子数守恒(参阅条目手征异常(chiralanomaly))轻子数守恒(参阅条目中微子振荡)味守恒(在电弱理论里,这种对称会被违背)宇称对称性正反共轭对称性(chargeconjugationsymmetry))时间反演对称性CP对称性(综合电荷、宇称共轭。假若CPT对称性成立,则等价于时间反演对称性。)参阅守恒量连续方程未解决的物理学问题...
· 动量守恒定律
数学表示以用p表示动量,或者动量守恒定律应用条件动量守恒定律严格成立的条件是物体系受到的合外力为零。当系统内部的物体之间相互作用的内力远远大于外力,相对于内力,可以忽略外力,此时动量守恒定律近似成立。例如物体由于爆炸分割为多个小物体,此时爆炸产生的力远大于空气阻力。所以可视动量守恒。若在某一个方向上,合外力的分量为零,则该方向的动量守恒,即动量在该方向的分量守恒。(根据运动的分解与合成和力的独立作用原理可推知)动量守恒定律的本质论证动量守恒定律的牛顿摆动量守恒定律是空间平移不变性的表现。在狭义相对论中,动量和能量结合在一起成为动量-能量四维矢量,动量守恒定律也与能量守恒定律一起结合为四维动量守恒定律。动量守恒定律的意义动量守恒定律与能量守恒定律、角动量守恒定律是自然界的普遍规律,在微观粒子作高速运动(速度接近光速)的情况下,牛顿定律已经不适用,但是以上定律仍然适用。现代物理学研究中,动量守...
· 能量守恒定律
历史戈特弗里德·莱布尼茨早从约公元前五百年时,古希腊哲学家泰勒斯就认为在所有物质之中,有某种潜藏的物质会守恒不变化,不过当时泰勒斯当时认为守恒的物质是水,而这和现在认知的质量或质能都没有关系,恩培多克勒(490–430BCE)认为在宇宙是由四元素(火、风、水、地)组成,“没有一様会增加或是减少。”,不过这些元素会不断的重组。1638年时伽利略发表了许多研究,包括著名的单摆的实验,可以表示为势能和动能之间不停的转换。戈特弗里德·莱布尼茨在1676年至1689年间,首先试着将和运动有关的能量以数学公式表示,莱布尼茨发现在许多力学系统中(有多个质量mi,各自的速度为vi),只要各质量之间没有碰撞,以下物理量会守恒:他将此物理量称为系统的“活力(英语:Visviva)”。此定律精确的描述了在没有摩擦力时动能的守恒。当时许多物理学家发现动量守恒,也就是在一个没有摩擦力的系统中,以下式表示的动量会守恒...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信