族谱网 头条 人物百科

卡尔·雅可比

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:914
转发:0
评论:0
生平雅可比生于一个阿什肯纳兹犹太家庭父亲西蒙·雅可比是银行家。卡尔是四个子女中的第二子,其长兄莫里兹·冯·雅可比之后同样因成为工程师和物理学家而出名。最初,雅可比在家接受其叔叔的家庭教育,学习了简单的数学和语言。在1816年,12岁的雅可比进入波茨坦文理中学(预科学校)学习经典语言,德语,以及数学。缘于叔叔对他的良好基础教育,以及自身的杰出能力,在不到半年的时间内雅可比就跳级到了高年级,尽管年龄还未达到标准。然而,因为大学并不招收16岁以下的学生,因此,雅可比直到1821年才能从学校毕业。在这段时间里,雅可比显示出了对很多专业的兴趣,包括拉丁语,希腊语,哲学,历史,以及数学。在这段时间中,雅可比第一次尝试寻找五次方程的根式。1821年,雅可比进入柏林大学就读,并于1825年于柏林大学获博士学位。一开始,他将自己的精力同时放到哲学和数学两个领域。在哲学上,他参加了伯克(AugustBoeck...

生平

雅可比生于一个阿什肯纳兹犹太家庭父亲西蒙·雅可比是银行家。卡尔是四个子女中的第二子,其长兄莫里兹·冯·雅可比之后同样因成为工程师和物理学家而出名。最初,雅可比在家接受其叔叔的家庭教育,学习了简单的数学和语言。在1816年,12岁的雅可比进入波茨坦文理中学(预科学校)学习经典语言,德语,以及数学。缘于叔叔对他的良好基础教育,以及自身的杰出能力,在不到半年的时间内雅可比就跳级到了高年级,尽管年龄还未达到标准。然而,因为大学并不招收16岁以下的学生,因此,雅可比直到1821年才能从学校毕业。在这段时间里,雅可比显示出了对很多专业的兴趣,包括拉丁语,希腊语,哲学,历史,以及数学。在这段时间中,雅可比第一次尝试寻找五次方程的根式。

1821年,雅可比进入柏林大学就读,并于1825年于柏林大学获博士学位。一开始,他将自己的精力同时放到哲学和数学两个领域。在哲学上,他参加了伯克(August Boeckh(英语:August Böckh)) 的研讨会,因他的才华而受到教授的注意。在数学上,雅可比并没有在大学注册很多课程,因为当时德国的数学课程对他来说太过基础。与此同时,他继续自学着欧拉、拉格朗日,和拉普拉斯的研究成果。在1823年,他认识到需要在他喜爱的数学和哲学当中做一个抉择,并最终选择将所有的精力投入到数学当中。同年,它满足了成为中学教师的资格,并收到柏林的约阿希姆斯塔尔中学(Joachimsthal Gymnasium)的邀请。但是,雅可比决定继续追求大学教职。在1825年,雅可比通过有理函数的部分分式分解这样一篇博士论文获得了博士学位。与此同时,雅可比皈依基督教,并获得了特许任教许可,并在1825/1826学年教授曲线与曲面理论。

1827年,雅可比正式成为教授,后于1829年担任哥尼斯堡大学数学系终身教授直至1842年。1836年,他被选为瑞典皇家科学院的外籍成员。

1843年时因工作过度而导致健康极度恶化,后前往意大利休养。回来时,雅可比搬到了柏林,同时开始领取养老金。在1848年革命期间,雅可比卷入了政治斗争并代表自由党派选举议会候选人失败。这个行为导致当革命被后雅可比的皇家补助金被取消,但因为他的名气和声誉,很快补助金被恢复。

科学贡献

雅可比最杰出的成就之一是他对椭圆函数的理论以及其与椭圆Θ函数的关系,并发表在他著名的论文《Fundamenta nova theoriae functionum ellipticarum(英语:Fundamenta nova theoriae functionum ellipticarum)》(1829)以及后发表在《Crelle"s Journal(英语:Crelle"s Journal)》的文章。Θ函数在数学物理上有非常重要的地位,缘于其在周期流(period flow )与类周期流(quasi-period flow) 的逆问题中扮演的角色。利用雅可比椭圆函数,一些特殊的运动方程变为可积方程,其中包括钟摆,欧拉陀螺(Euler top),重力场中对称的拉格朗日陀螺(Lagrange top),以及开普勒问题(中心重力场中的行星运动)。

雅可比在微分方程和经典力学上的研究,尤其是哈密顿-雅可比方程,对该领域做出了根本性的贡献。

雅可比最主要的影响通过他于1826年起在《Crelle’s Journal》发表的大量文章反映在代数领域以及其他一些数学领域。他的其中一条格言:“逆转,总是应该逆转”("man muss immer umkehren")表达了他认为大量的困难问题,都可以用逆转这种重新表达的方式来求解。

在1835年的一篇文章当中,雅可比对分类周期性函数(包括椭圆函数)的基本结果进行了证明:如果一个单变量单值方程是一个多周期方程,那么这个方程不会超过两个周期,同时,周期的比值不可以是实数。雅可比发现了许多Θ函数的基础性质,包括方程等式和雅可比三重积公式,以及许多在Q阶乘幂和超几何函数方面的结果。

1854年,魏尔斯特拉斯所解出的,雅可比反转问题在超椭圆Abel map(hyperelliptic Abel map)上的解,引入了超椭圆Θ函数以及广义黎曼Θ函数的概念。

雅可比是第一个将椭圆方程应用到数论上的人,例如证明费马平方和定理、拉格朗日四平方和定理,以及类似的六、八平方和。他在数论上的其他成果延续了高斯的工作:二次互反律的新证明,雅可比符号的引入,对高次互反律的贡献,对连分数的研究,雅可比和(英语:Jacobi sum)的发明。

雅可比同时也是最早的行列式发明者之一,特别是,他发明了雅可比行列式(详细介绍见该词条)。这个行列式在分析数学中有非常重要的地位。在1841年,雅可比重新定义了勒让德的偏微分符号∂,其后成为标准用法。

在学习矢量场和李代数的时候经常会用到作为雅可比恒等式,这一恒等式是对李氏括号(英语:Lie bracket of vector fields)进行的结合律操作的一种类比。

行星理论以及其他运动学问题会不时地引起雅可比的注意。在对天体力学做出贡献的同时,他引入了为恒星坐标系的雅可比积分(英语:Jacobi integral)(1836)

贡献

雅可比矩阵

雅可比恒等式

雅可比椭圆函数

雅可比符号

雅可比旋转

雅可比和(英语:Jacobi sum)

雅可比积分(英语:Jacobi integral)

雅可比最后乘子

 


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 雅可比旋转
数值稳定计算要确定需要更改的数量,我们必须解远离对角的元素为零的方程(Golub&VanLoan1996,§8.4)。这蕴涵了设β是这个数量的一半,如果akℓ是零,我们可以停止而不需要进行更改,因此我们永不除以零。设t是tanϑ。则通过一些三角恒等式我们简约这个方程为为了稳定性我们选择解以此我们可以获得c和s为尽管我们可以使用前面给出的代数更改等式,重写它们会更好。设所以ρ=tan(ϑ/2)。则修订后的修改方程为如前面提及的,我们永不需要明确的计算旋转角度ϑ。事实上,我们可以通过只保留三个值k,ℓ和t来重新生成由Qkℓ确定的对称更改,带有t对零旋转设置为零。参见Givens旋转引用Golub,GeneH.&CharlesF.VanLoan(1996),MatrixComputations(3rded.),Baltimore:JohnsHopkinsUniversi...
· 雅可比符号
定义勒让德符号(ap){\displaystyle({\tfrac{a}{p}})}是对于所有的正整数a{\displaystylea}和所有的素数p{\displaystylep}定义的。当(ap)=1{\displaystyle({\frac{a}{p}})=1}时,称a{\displaystylea}是模p{\displaystylep}的二次剩余;当(ap)=−−-->1{\displaystyle({\frac{a}{p}})=-1}时,称a{\displaystylea}是模p{\displaystylep}的二次非剩余。运用勒让德符号计算时要将a{\displaystylea}分解成标准形式,计算上十分麻烦,因此产生了雅可比符号:设m{\displaystylem}是一个正奇数,其质因数分解式为m=∏∏-->i=pi{\displaystylem=\prod_{i...
· 雅可比猜想
雅可比行列式令n>1为固定的整数,考虑多项式F1,...,Fn,变量为X=(X1,...,Xn),系数在特征为零的代数闭域k中。(可假设k为复数域C{\displaystyle\mathbb{C}}。)也就是说F1,……-->,Fn∈∈-->k[X]{\displaystyleF_{1},\ldots,F_{n}\ink[X]}。定义函数F:k→k为函数F的雅可比行列式JF是由F的偏导数组成的n×n矩阵的行列式JF也是变量为X的多项式函数。叙述多变量微积分的反函数定理指出如在某一点有JF≠0,那么在该点附近F有反函数。由于k是代数闭域,JF是多项式,因此JF必定在某些点上为0,除非JF是非零的常数函数。以下是一项基本结果:而其反命题则为雅可比猜想:令k{\displaystylek}为一特征为零的代数闭域。若F=(F1,……-->,Fn)∈∈-->...
· 雅可比矩阵
雅可比矩阵假设某函数从Rn{\displaystyle\mathbb{R}^{n}}映到Rm{\displaystyle\mathbb{R}^{m}},其雅可比矩阵是从Rn{\displaystyle\mathbb{R}^{n}}到Rm{\displaystyle\mathbb{R}^{m}}的线性映射,其重要意义在于它表现了一个多变数向量函数的最佳线性逼近。因此,雅可比矩阵类似于单变数函数的导数。假设F:Rn→Rm是一个从n维欧氏空间映射到到m维欧氏空间的函数。这个函数由m个实函数组成:y1(x1,...,xn),...,ym(x1,...,xn)。这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵(mbyn),这就是所谓的雅可比矩阵:此矩阵用符号表示为:这个矩阵的第i行是由梯度函数的转置yi(i=1,...,m)表示的如果p是Rn{\displaystyle\mathbb{R}^{...
· 雅可比恒等式
定义集合S{\displaystyleS}有一个二元运算子∗∗-->{\displaystyle*}及可交换二元运算子+{\displaystyle+雅可比雅可比恒等式,如果李代数是满足雅可比恒等式的代数结构的一个主要例子。注意,满足雅可比恒等式的代数结构不一定满足反交换律。

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信