族谱网 头条 人物百科

前线轨道理论

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:1279
转发:0
评论:0
理论福井谦一发现,通过HOMO/LUMO可以近似地判断出反应性。这一理论主要是基于双分子反应的分子轨道理论观察得出的三个条件:不同分子的占用轨道相互排斥。不同分子的相异电荷互相吸引。一个分子的占用轨道和另一个分子的未占轨道之间的作用导致相互吸引,尤其是HOMO和LUMO之间。据此,前线轨道理论将两种反应物的反应性简化为HOMO和LUMO的判断。它能够解释分子轨道对称守恒原理对热环化反应的预测,可将判断依据概括为:(4q+2)s指芳香性、同面的电子体系数目;(4r)a指反芳香性、异面的电子体系数目。若两者之和为奇数,则反应在热力学上是可以进行的。应用环加成反应环加成反应是一种同时形成至少两个新键的反应,反应中至少两个链分子加成到环上。这些反应中,典型的过渡态包含电子在连续的环中移动,即周环反应。可用分子轨道对称守恒原理预测这些反应,因此也能用前线轨道理论进行估算。顺丁烯二酸酐和环戊二烯之间的...

理论

福井谦一发现,通过HOMO/LUMO可以近似地判断出反应性。这一理论主要是基于双分子反应的分子轨道理论观察得出的三个条件:

不同分子的占用轨道相互排斥。

不同分子的相异电荷互相吸引。

一个分子的占用轨道和另一个分子的未占轨道之间的作用导致相互吸引,尤其是HOMO和LUMO之间。

据此,前线轨道理论将两种反应物的反应性简化为HOMO和LUMO的判断。它能够解释分子轨道对称守恒原理对热环化反应的预测,可将判断依据概括为:

(4q+2)s指芳香性、同面的电子体系数目;(4r)a指反芳香性、异面的电子体系数目。若两者之和为奇数,则反应在热力学上是可以进行的。

应用

环加成反应

环加成反应是一种同时形成至少两个新键的反应,反应中至少两个链分子加成到环上。这些反应中,典型的过渡态包含电子在连续的环中移动,即周环反应。可用分子轨道对称守恒原理预测这些反应,因此也能用前线轨道理论进行估算。

顺丁烯二酸酐和环戊二烯之间的狄尔斯-阿德耳反应根据分子轨道对称守恒原理是可以进行的,因为同面有六个电子移动、异面没有电子移动。(4q + 2)s为1,(4r)a为0,所以反应在热力学上可以进行。

前线轨道理论还发现,通过预测立体选择性,本反应是可以进行的,并且能得出更多结论,这是分子轨道对称守恒原理没有交代的。本反应属于[4+2]反应,可以被简化视作丁二烯和乙烯的反应,丁二烯的HOMO和乙烯的LUMO都是反对称的,意味着反应可以进行。

涉及顺丁烯二酸酐和环戊二烯反应的立体选择性问题,“内型”产物更容易得到,这一现象可以用前线轨道理论很好地解释。顺丁烯二酸酐具有吸电子效应,使亲二烯体电子缺陷,导致狄尔斯-阿尔德反应发生。如此,只有环戊二烯的HOMO和顺丁烯二酸酐的LUMO之间的反应才被允许。此外,尽管外型产物是异构体中热力学较稳定的一种,在内型产物过渡态中有次级(非键)轨道影响,降低它的能量,使反应更快地向内型产物转化,所以在动力学上更有利。外型产物仍然能产生,内型产物为主产物。

注:乙烯的LUMO和丁二烯的HOMO都是对称的,它们之间的反应是可以进行的,属于反电子需求Diels-Alder反应。

σ迁移反应

σ迁移反应是一种σ键在π共轭体系中移动的反应,伴随着π键的迁移。σ键的迁移可能是同面的或者异面的。以戊二烯的[1,5]迁移为例,若发生同面迁移,有6 e电子同面移动,异面没有电子移动,意味着反应是分子轨道对称守恒原理允许的。异面迁移则反应不被允许。

这部分结论同样可用前线轨道理论的HOMO和LUMO加以解释。要运用前线轨道理论,这反应要从两个方面考虑:(1)反应是否可以进行,(2)反应通过何种机理进行。以戊二烯的[1,5]迁移为例,可以观察到σ键的HOMO和丁二烯剩下四个碳原子上的LUMO。假设反应在同面发生,丁二烯四个碳原子上的HOMO迁移后不会出现在产物的σ键上。π体系从LUMO转换为HOMO,所以这个反应是可以进行的(若从LUMO到LUMO则无法进行)。

关于反应在同面发生的解释,首先要注意到终端轨道处在同一态。如σ键在迁移后形成,则反应必须在同面发生。异面反应会形成反键轨道,不会有σ迁移。

值得一提的是,丙烯的迁移是异面的,但因为分子很小,无法扭转,反应不能进行。

电环化反应

电环化反应是一种有一个π键断裂,一个σ键形成而成环的周环反应。这类反应可以通过顺旋或者对旋机理进行。在环丁烯的顺旋开环过程中,两个电子在π键同面移动,另外两个电子在σ键异面移动。这意味着存在一个4q + 2同面体系,无4r异面体系,因此对旋过程在热力学上是被分子轨道对称守恒原理允许的。

σ键的HOMO和π键的LUMO在分子轨道理论中占有重要地位。如果开环是经对旋过程,则反应产物出现丁二烯的HOMO。和σ迁移反应的离子相同,π体系从LUMO转化为HOMO,反应是可以进行的。

参见

分子轨道理论

HOMO/LUMO


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 分子轨道理论
简介分子轨道理论认为,分子轨道由原子轨道线性组合得到,分布在整个分子之中。分子轨道仅仅是一个薛定谔轨道,包含数个(通常只有两个)原子核。由此可衍生出成键、反键和非键轨道的概念:如果组合得到的分子轨道能量比组合前原子轨道能量之和低,换句话说,原子核间电子云密度增大,那么所得分子轨道称作成键轨道;如果组合得到的分子轨道能量比组合前原子轨道能量之和高,即原子核间电子云密度减小,则称作反键轨道,以标注;如果组合得到的分子轨道能量与组合前原子轨道能量之和相差不大,轨道上的电子对分子键合没有贡献,那么该分子轨道则称作非键轨道,常以n标注。分子轨道法的基本要点,即LCAO-MO法的基本原则包括:对称性匹配原则:原子轨道必须具有相同的对称性才能组合成分子轨道,参见对称运算。最大重叠原则:原子轨道重叠程度越大,形成的化学键也越强。能量相近原则:能量相近的原子轨道才能组合成有效的分子轨道。除了遵照LCAO-M...
· 前线任务系列
作品更多资料:前线任务系列作品列表电子游戏前线任务系列从1995年起,已经发行了11部电子游戏,七部为本传作品,另外四部为衍生作品。此外,系列还有几部电子游戏移植、重制与合辑。在2002年7月12日,《前线任务》的直接移植版发行于万代WonderSwanColor。一年后的2003年10月23日,游戏索尼PlayStation平台重制版《前线任务1st》发行。在发行后不久的2003年12月11日,合辑《前线任务历史》在日本发行。合计收录了《前线任务1st》重制版、修改版的《前线任务2》和《前线任务3》。《前线任务1st》的任天堂DS重制版于2007年5月22日发行。系列第二款重制游戏为《前线任务2089》的重制版《前线任务2089疯狂边界》。该重制版于2008年5月29日在日本发行。全部的前线任务游戏都在日本发行,但只有少量作品在日本外本地化。《前线任务3》是首部在北美和欧洲发行的游戏,发
· 轨道
历史历史上,人们用本轮来描述行星的视运动,认为行星的运动是很多圆周运动合成的结果,这是一种几何方法,并没有涉及引力的概念。在开普勒证明行星的运动轨迹是椭圆之前,用这种方法来预测行星的轨迹勉强可行。最开始,人们使用以地球为中心的太阳系天球模型来解释行星的视运动。该模型假设存在一个完美的球体或圆环,所有的恒星和行星都在其表面运动。在更精确的测量了行星的运动后,人们引入了均轮和本轮这样的理论来描述行星运动。这种系统能更精确的预测行星的位置,但随着测量结果越来越精确,需要加入更多的本轮到模型中,因此,这种模型变得越来越繁琐。17世纪初,在约翰内斯·开普勒对大量精密观察的天体轨道数据进行分析后,得出著名的3个行星运动定律。第一,他发现太阳系中行星轨道不是以往人们想象的正圆形,而是椭圆的;太阳也不是位于轨道中心,而是在一个焦点上。第二,行星的轨道速度,也不是恒定不变的,事实上行星的轨道速度与当下行星至...
· π轨道
结构苯的π轨道呈环状,但中心仍有电子分布π轨道是一种由轨道并肩重叠后所形成的分子轨道,除了s轨道无法形成π轨道,之外,大部分的轨道都可以形成π轨道,较常是由两个pz轨道所形成,但实际上只要方向对了,无论是px或py都能形成π轨道。π轨道可以有很多形状,但都不与核轴成旋转对称,其形状取决于他所形成的π键,例如:有共振时,π轨道就会变得较大较狭长,若是环状的共振,则其π轨道呈环形。其能容纳的电子数量也由其所形成的π键来决定,如乙烯内所形成的π轨道可容纳下2个电子,而苯的π轨道呈环状,可容下6个电子,这是因为共振使电子均匀分布而导致。此外,在形成化学建的过程中,未杂化的轨愈有可能形成π轨道,如乙烯,碳上形成了sp杂化轨道,而未杂化的p轨道则形成π轨道。轨道能级丁二烯中,不同能级的π轨道及其形状。根据休克尔方法,可得出不同能量的π轨道,不同能级的π轨道形状不尽相同,电子会先从能量低的π轨道开始填入...
· d轨道
命名d轨道的“d”是“diffused”,其为“漫系光谱”之意。结构五种d轨道的形状,除了dz之外,其他四个形状相同,只是方向不同5d轨道模型,红色和蓝色中间空隙则为波节d轨道从主量子数n=3开始出现,最小的d轨道是3d轨道,也就是说1d、2d轨道不存在,当角量子数为2时,其轨道为d轨道,主量子数不可小于三,对应于五个磁量子数2、1、0、-1、-2,在3d轨道中,有五个能量相同的3d轨道,同样的,主量子数为4以上时也有五个4d轨道,因此,每个壳层都有五个d轨道,它们分别为dz、dx-y、dxy、dyz、dxz,但是没有dx、dy、dy-z、dx-z。在存在的五个d轨道(dz、dx-y、dxy、dyz、dxz)中,有四个形状相同,分别为:dx-y、dxy、dyz、dxz但方向不同,而dz是五个d轨道中形状与众不同的一个,尽管如此,dz轨道仍具有和dx-y、dxy、dyz及dxz相同之能量。4...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信