泽尔尼克多项式
泽尔尼克多项式的超几何函数表示
泽尔尼克多项式也可以表示为超几何函数
Noll 序列
Noll 用一个J数字表示 [n,m]:如下表
泽尔尼克多项式
由于
其中kj{\displaystyle k_{j}}因j而异,
必须先归一化
令Zj=Zj/(kj){\displaystyle Z_{j}=Z_{j}/{\sqrt {(}}k_{j})}
使得
归一化泽尔尼克多项式以Noll序列排列如下:
正交性
其中 ϵ ϵ -->m{\displaystyle \epsilon _{m}} 称为Neumann因子,其数值为 2 如果满足 m=0{\displaystyle m=0} ,数值为 1,如果 m≠ ≠ -->0{\displaystyle m\neq 0}.
其中 d2r=ρ ρ -->dρ ρ -->dφ φ -->{\displaystyle d^{2}r=\rho \,d\rho \,d\varphi } 为 雅可比矩阵
n− − -->m{\displaystyle n-m} 与 n′− − -->m′{\displaystyle n"-m"} 都是偶数.
参考文献
MathWorld上Zernike Polynomial的资料,作者:埃里克·韦斯坦因。
Callahan, P. G.; De Graef, M. Precipitate shape fitting and reconstruction by means of 3D Zernike functions. Model. Simul. Mat. Sci. Engin. 2012, 20: 015003.Bibcode:2012MSMSE..20a5003C. doi:10.1088/0965-0393/20/1/015003.
Campbell, C. E. Matrix method to find a new set of Zernike coefficients form an original set when the aperture radius is changed. J. Opt. Soc. Am. A. 2003, 20 (2): 209.Bibcode:2003JOSAA..20..209C. doi:10.1364/JOSAA.20.000209.
Cerjan, C. The Zernike-Bessel representation and its application to Hankel transforms. J. Opt. Soc. Am. A. 2007, 24 (6): 1609.Bibcode:2007JOSAA..24.1609C. doi:10.1364/JOSAA.24.001609.
Comastri, S. A.; Perez, L. I.; Perez, G. D.; Martin, G.; Bastida Cerjan, K. Zernike expansion coefficients: rescaling and decentering for different pupils and evaluation of corneal aberrations. J. Opt. Soc. Am. A. 2007, 9 (3): 209.Bibcode:2007JOptA...9..209C. doi:10.1088/1464-4258/9/3/001.
Conforti, G. Zernike aberration coefficients from Seidel and higher-order power-series coefficients. Opt. Lett. 1983, 8 (7): 407–408.Bibcode:1983OptL....8..407C. doi:10.1364/OL.8.000407.
Dai, G-m.; Mahajan, V. N.Zernike annular polynomials and atmospheric turbulence. J. Opt. Soc. Am. A. 2007, 24: 139.Bibcode:2007JOSAA..24..139D. doi:10.1364/JOSAA.24.000139.
Dai, G-m.Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula. J. Opt. Soc. Am. A. 2006, 23 (3): 539.Bibcode:2006JOSAA..23..539D. doi:10.1364/JOSAA.23.000539.
Díaz, J. A.; Fernández-Dorado, J.; Pizarro, C.; Arasa, J. Zernike Coefficients for Concentric, Circular, Scaled Pupils: An Equivalent Expression. Journal of Modern Optics. 2009, 56 (1): 149–155.Bibcode:2009JMOp...56..149D. doi:10.1080/09500340802531224.
Díaz, J. A.; Fernández-Dorado, J.Zernike Coefficients for Concentric, Circular, Scaled Pupils. from The Wolfram Demonstrations Project.
Farokhi, Sajad; Shamsuddin, Siti Mariyam; Flusser, Jan; Sheikh, U.U; Khansari, Mohammad; Jafari-Khouzani, Kourosh.Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis. Journal of Electronic Imaging. 2013, 22 (1).Bibcode:2013JEI....22a3030F. doi:10.1117/1.JEI.22.1.013030.
Gu, J.; Shu, H. Z.; Toumoulin, C.; Luo, L. M. A novel algorithm for fast computation of Zernike moments. Pattern Recogn. 2002, 35 (12): 2905–2911. doi:10.1016/S0031-3203(01)00194-7.
Herrmann, J.Cross coupling and aliasing in modal wave-front estimation. J. Opt. Soc. Am. 1981, 71 (8): 989.Bibcode:1981JOSA...71..989H. doi:10.1364/JOSA.71.000989.
Hu, P. H.; Stone, J.; Stanley, T. Application of Zernike polynomials to atmospheric propagation problems. J. Opt. Soc. Am. A. 1989, 6 (10): 1595.Bibcode:1989JOSAA...6.1595H. doi:10.1364/JOSAA.6.001595.
Kintner, E. C. On the mathematical properties of the Zernike Polynomials. Opt. Acta. 1976, 23 (8): 679.Bibcode:1976AcOpt..23..679K. doi:10.1080/713819334.
Lawrence, G. N.; Chow, W. W. Wave-front tomography by Zernike Polynomial decomposition. Opt. Lett. 1984, 9 (7): 267.Bibcode:1984OptL....9..267L. doi:10.1364/OL.9.000267.
Liu, Haiguang; Morris, Richard J.; Hexemer, A.; Grandison, Scott; Zwart, Peter H. Computation of small-angle scattering profiles with three-dimensional Zernike polynomials. Acta Cryst. A. 2012, (A69): 278–285. doi:10.1107/S010876731104788X.
Lundström, L.; Unsbo, P. Transformation of Zernike coefficients: scaled, translated and rotated wavefronts with circular and elliptical pupils. J. Opt. Soc. Am. A. 2007, 24 (3): 569.Bibcode:2007JOSAA..24..569L. doi:10.1364/JOSAA.24.000569.
Mahajan, V. N. Zernike annular polynomials for imaging systems with annular pupils. J. Opt. Soc. Am. 1981, 71: 75.Bibcode:1981JOSA...71...75M. doi:10.1364/JOSA.71.000075.
Mathar, R. J.. Third Order Newton"s Method for Zernike Polynomial Zeros. arXiv:0705.1329[math.NA]. 2007.
Mathar, R. J. Zernike Basis to Cartesian Transformations. Serbian Astronomical Journal. 2009, 179 (179): 107–120.Bibcode:2009SerAj.179..107M. arXiv:0809.2368. doi:10.2298/SAJ0979107M.
Prata Jr, A.; Rusch, W. V. T.Algorithm for computation of Zernike polynomials expansion coefficients. Appl. Opt. 1989, 28 (4): 749.Bibcode:1989ApOpt..28..749P. doi:10.1364/AO.28.000749.
Schwiegerling, J.Scaling Zernike expansion coefficients to different pupil sizes. J. Opt. Soc. Am. A. 2002, 19 (10): 1937.Bibcode:2002JOSAA..19.1937S. doi:10.1364/JOSAA.19.001937.
Sheppard, C. J. R.; Campbell, S.; Hirschhorn, M. D.Zernike expansion of separable functions in Cartesian coordinates. Appl. Opt. 2004, 43 (20): 3963.Bibcode:2004ApOpt..43.3963S. doi:10.1364/AO.43.003963.
Shu, H.; Luo, L.; Han, G.; Coatrieux, J.-L.General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes. J. Opt. Soc. Am. A. 2006, 23 (8): 1960.Bibcode:2006JOSAA..23.1960S. doi:10.1364/JOSAA.23.001960.
Swantner, W.; Chow, W. W.Gram-Schmidt orthogonalization of Zernike polynomials for general aperture shapes. Appl. Opt. 1994, 33 (10): 1832.Bibcode:1994ApOpt..33.1832S. doi:10.1364/AO.33.001832.
Tango, W. J. The circle polynomials of Zernike and their application in optics. Appl. Phys. A. 1977, 13 (4): 327.Bibcode:1977ApPhy..13..327T. doi:10.1007/BF00882606.
Tyson, R. K. Conversion of Zernike aberration coefficients to Seidel and higher-order power series aberration coefficients. Opt. Lett. 1982, 7 (6): 262.Bibcode:1982OptL....7..262T. doi:10.1364/OL.7.000262.
Wang, J. Y.; Silva, D. E. Wave-front interpretation with Zernike Polynomials. Appl. Opt. 1980, 19 (9): 1510.Bibcode:1980ApOpt..19.1510W. doi:10.1364/AO.19.001510.
Barakat, R. Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials. J. Opt. Soc. Am. 1980, 70 (6): 739.Bibcode:1980JOSA...70..739B. doi:10.1364/JOSA.70.000739.
Bhatia, A. B.; Wolf, E. The Zernike circle polynomials occurring in diffraction theory. Proc. Phys. Soc. B. 1952, 65 (11): 909.Bibcode:1952PPSB...65..909B. doi:10.1088/0370-1301/65/11/112.
ten Brummelaar, T. A. Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike. Opt. Commun. 1996, 132 (3–4): 329.Bibcode:1996OptCo.132..329T. doi:10.1016/0030-4018(96)00407-5.
Novotni, M.; Klein, R.3D Zernike Descriptors for Content Based Shape Retrieval(PDF). Proceedings of the 8th ACM Symposium on Solid Modeling and Applications.
Novotni, M.; Klein, R.Shape retrieval using 3D Zernike descriptors(PDF). Computer Aided Design. 2004, 36 (11): 1047–1062. doi:10.1016/j.cad.2004.01.005.
Farokhi, Sajad; Shamsuddin, Siti Mariyam; Sheikh, U.U; Flusser, Jan.Near Infrared Face Recognition: A Comparison of Moment-Based Approaches(PDF)291 (1). Springer: 129–135. 2014. doi:10.1007/978-981-4585-42-2_15.
Farokhi, Sajad; Shamsuddin, Siti Mariyam; Flusser, Jan; Sheikh, U.U; Khansari, Mohammad; Jafari-Khouzani, Kourosh.Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform. Digital Signal Processing. 2014, 31 (1). doi:10.1016/j.dsp.2014.04.008.
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值