希皮奥内·德尔·费罗
生平
费罗出生在意大利北部的博洛尼亚。当时古腾堡刚刚在15世纪50年代发明了印刷术,这使得各类著作能够通过书本得到流传,由于费罗的父亲在纸业工作,费罗在年轻的时候就能够接触到各种各样的作品。
费罗毕业于博洛尼亚大学,从1496年开始直到他去世,费罗都在博洛尼亚大学教授代数学和几何学。
费罗与一元三次方程
意大利数学家卢卡·帕西奥利(Luca Pacioli,1445年—1514年或1517年)于1494年在威尼斯发表了文艺复兴时期最伟大的数学著作《Summa de arithmetica, geometrica, proportioni et proportionalita》,他在书中记录了对一元三次方程解法的艰辛探索,并下结论认为在当时的数学,求解一元三次方程是根本不可能的。
帕西奥利曾于1501年至1502年间来到博洛尼亚大学任教,期间与同在博洛尼亚大学的费罗讨论过许多数学问题,人们并不知晓他们是否也曾讨论过一元三次方程问题,但是在帕西奥利离开博洛尼亚后不久,费罗就至少解决了一元三次方程在一种情况下(x + mx = n)的解,这在求解一元三次方程的道路上是一个突破性的成功。然而费罗并没有马上发表自己的成果,而是对解法保密,这很大程度上是因为他拒绝公开交流他的思想,他更愿意与他的朋友和学生交流,而不是将它们写下来出版,因此费罗的手稿并没有流传至今。尽管如此,他曾有过一本笔记簿,记录了他所有的重要发现,其中包括一元三次方程的解法。在他1526年去世后,这本笔记簿由他的女婿Hannival Nave继承了,Nave也是一个数学家,他替代费罗继续在博洛尼亚大学授课。同时被传授这一解法的还有费罗的学生菲奥尔。
一元三次方程解法的进展在费罗去世后充满了戏剧性,先是菲奥尔在得到秘传后吹嘘自己能够解所有的一元三次方程,其实他只会费罗传授他的x + mx = n,而另一位意大利数学家(尼科洛·塔尔塔利亚(1499年—1557年12月13日)在1534年宣称自己发现了形如x + mx = n的方程的解,两人相约在米兰进行公开比赛。1535年就在比赛前夕,塔塔利亚苦思冥想出来其他多种形式的一元三次方程解,从而轻而易举地赢得了比赛,并在1541年终于完全解决了一元三次方程的求解问题。与费罗相同的是,塔塔利亚同样选择保守解法的秘密。
同样研究一元三次方程的意大利医生、哲学家和数学家吉罗拉莫·卡尔达诺在允诺不公开的条件下,1539年从塔尔塔利亚那里得到了他的解法,在其基础上也发现了所有一元三次方程的解法。而在1543年,卡尔达诺和他的学生卢多维科·费拉里(Ludovico Ferrari,1522年2月2日—1565年10月5日)曾前往博洛尼亚,从费罗的女婿Nave处得知,其实费罗早于塔塔利亚已经发现了一元三次方程的解法,他便摒弃了给塔塔利亚的承诺,将他拓展的解法在1545年的著作《大术》(又译《数学大典》,Ars Magns)中发表,他在书中称,是费罗第一个发现了一元三次方程的解法,而他所给出的解法其实就是费罗的解法。由于卡尔达诺最早发表了求解一元三次方程的方法,因而该解法至今仍被称为“卡尔达诺公式”。在《大术》中同时发表的还有费拉里的一元四次方程一般解法。
费罗的一元三次方程解法
一元三次方程形如
与费罗同时代的数学家们已经知道,一元三次方程可以用代入法(如y = x + a/3)消去二次项后,简化成四种形式:
其中系数m和n都为正数。费罗得出的是其中第一种形式的解法:
费罗公式只给出了一元三次方程的部分解,卡尔达诺公式给出了完全解。
其他成就
除了一元三次方程的求解外,费罗还对分数的有理化做出了重要的贡献,他将分母从两个平方根之和扩展到了三个三次方根之和。
参考文献
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值