广义相对论的量子理论是什么 当前的进展如何
量子理论
如果说广义相对论是现代物理学的两大支柱之一,那么量子理论作为我们借此了解基本粒子以及凝聚态物理的基础理论就是现代物理的另一支柱。然而,如何将量子理论中的概念应用到广义相对论的框架中仍然是一个未能解决的问题。
量子场论
作为现代物理中粒子物理学的基础,通常意义上的量子场论是建立在平直的闵可夫斯基时空中的,这对于处在像地球这样的弱引力场中的微观粒子的描述而言是一个非常好的近似。而在某些情形中,引力场的强度足以影响到其中的量子化的物质但不足以要求引力场本身也被量子化,为此物理学家发展了弯曲时空中的量子场论。这些理论借助于经典的广义相对论来描述弯曲的背景时空,并定义了广义化的弯曲时空中的量子场理论。通过这种理论,可以证明黑洞也在通过黑体辐射释放出粒子,这即是霍金辐射,并有可能通过这种机制导致黑洞最终蒸发。如前文所述,霍金辐射在黑洞热力学的研究中起到了关键作用。
量子引力
物质的量子化描述和时空的几何化描述之间彼此不具有相容性,以及广义相对论中时空曲率无限大(意味着其结构成为微观尺度)的奇点的出现,这些都要求着一个完整的量子引力理论的建立。这个理论需要能够对黑洞内部以及极早期宇宙的情形做出充分的描述,而其中的引力和相关的时空几何需要用量子化的语言来叙述。尽管物理学家为此做出了很多努力,并有多个有潜质的候选理论已经发展起来,至今人类还没能得到一个称得上完整并自洽的量子引力理论。
一个卡拉比-丘流形的投影,由弦理论所提出的紧化额外维度的一种方法量子场论作为粒子物理的基础已经能够描述除引力外的其余三种基本相互作用,但试图将引力概括到量子场论的框架中的尝试却遇到了严重的问题。在低能区域这种尝试取得了成功,其结果是一个可被接受的引力的有效(量子)场理论,但在高能区域得到的模型是发散的(不可重整化)。
圈量子引力中的一个简单自旋网络
试图克服这些限制的尝试性理论之一是弦论,在这种量子理论中研究的最基本单位不再是点状粒子,而是一维的弦。弦论有可能成为能够描述所有粒子和包括引力在内的基本相互作用的大统一理论,其代价是导致了在三维空间的基础上生成六维的额外维度等反常特性。在所谓第二次超弦理论革新中,人们猜测超弦理论,以及广义相对论与超对称的统一即所谓超引力,能够构成一个猜想的十一维模型的一部分,这种模型叫做M理论,它被认为能够建立一个具有唯一性定义且自洽的量子引力理论。
另外一种尝试来自于量子理论中的正则量子化方法。应用广义相对论的初值形式(参见上文演化方程一节),其结果是惠勒-得卫特方程(其作用类似于薛定谔方程)。虽然这个方程在一般情形下定义并不完备,但在所谓阿西特卡变量的引入下,从这个方程能够得到一个很有前途的模型:圈量子引力。在这个理论中空间是一种被称作自旋网络的网状结构,并在离散的时间中演化。
当前进展
在引力和宇宙学的研究中,广义相对论已经成为了一个高度成功的模型,至今为止已经通过了每一次意义明确的观测和实验的检验。然而即便如此,仍然有证据显示这个理论并不是那么完善的:对量子引力的寻求以及时空奇点的现实性问题依然有待解决;实验观测得到的支持暗物质和暗能量存在的数据结果也在暗暗呼唤着一种新物理学的建立;而从先驱者号观测到的反常效应也许可以用已知的理论来解释,也许则真的是一种新物理学来临的预告。不过,广义相对论之中仍然充满了值得探索的可能性:数学相对论学家正在寻求理解奇点的本性,以及爱因斯坦场方程的基本属性;不断更新的计算机正在进行黑洞合并等更多的数值模拟;广义相对论最后一个预言(引力波)已被证实,人类探测到了引力波,对宇宙的认识将会到达一个新的领域。在爱因斯坦发表他的理论九十多年之后,广义相对论依然是一个高度活跃的研究领域。
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值